annotate dsp/onsets/DetectionFunction.cpp @ 130:2053a308bb4d kissfft

Frame length no longer needs to be a power of two
author Chris Cannam
date Tue, 15 Oct 2013 11:52:00 +0100
parents b0e98fcfacd7
children 2ae4ceb76ac3
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP Library
cannam@0 5
cannam@0 6 Centre for Digital Music, Queen Mary, University of London.
Chris@84 7 This file 2005-2006 Christian Landone.
Chris@84 8
Chris@84 9 This program is free software; you can redistribute it and/or
Chris@84 10 modify it under the terms of the GNU General Public License as
Chris@84 11 published by the Free Software Foundation; either version 2 of the
Chris@84 12 License, or (at your option) any later version. See the file
Chris@84 13 COPYING included with this distribution for more information.
cannam@0 14 */
cannam@0 15
cannam@0 16 #include "DetectionFunction.h"
cannam@47 17 #include <cstring>
cannam@0 18
cannam@0 19 //////////////////////////////////////////////////////////////////////
cannam@0 20 // Construction/Destruction
cannam@0 21 //////////////////////////////////////////////////////////////////////
cannam@0 22
cannam@0 23 DetectionFunction::DetectionFunction( DFConfig Config ) :
cannam@0 24 m_window(0)
cannam@0 25 {
cannam@2 26 m_magHistory = NULL;
cannam@2 27 m_phaseHistory = NULL;
cannam@2 28 m_phaseHistoryOld = NULL;
cannam@14 29 m_magPeaks = NULL;
cannam@0 30
cannam@0 31 initialise( Config );
cannam@0 32 }
cannam@0 33
cannam@0 34 DetectionFunction::~DetectionFunction()
cannam@0 35 {
cannam@0 36 deInitialise();
cannam@0 37 }
cannam@0 38
cannam@0 39
cannam@0 40 void DetectionFunction::initialise( DFConfig Config )
cannam@0 41 {
cannam@0 42 m_dataLength = Config.frameLength;
Chris@115 43 m_halfLength = m_dataLength/2 + 1;
cannam@14 44
cannam@0 45 m_DFType = Config.DFType;
cannam@13 46 m_stepSize = Config.stepSize;
cannam@0 47
cannam@14 48 m_whiten = Config.adaptiveWhitening;
cannam@14 49 m_whitenRelaxCoeff = Config.whiteningRelaxCoeff;
cannam@14 50 m_whitenFloor = Config.whiteningFloor;
cannam@14 51 if (m_whitenRelaxCoeff < 0) m_whitenRelaxCoeff = 0.9997;
cannam@14 52 if (m_whitenFloor < 0) m_whitenFloor = 0.01;
cannam@14 53
cannam@2 54 m_magHistory = new double[ m_halfLength ];
cannam@2 55 memset(m_magHistory,0, m_halfLength*sizeof(double));
cannam@0 56
cannam@2 57 m_phaseHistory = new double[ m_halfLength ];
cannam@2 58 memset(m_phaseHistory,0, m_halfLength*sizeof(double));
cannam@0 59
cannam@2 60 m_phaseHistoryOld = new double[ m_halfLength ];
cannam@2 61 memset(m_phaseHistoryOld,0, m_halfLength*sizeof(double));
cannam@0 62
cannam@14 63 m_magPeaks = new double[ m_halfLength ];
cannam@14 64 memset(m_magPeaks,0, m_halfLength*sizeof(double));
cannam@14 65
Chris@130 66 m_phaseVoc = new PhaseVocoder(m_dataLength, m_stepSize);
cannam@0 67
cannam@0 68 m_magnitude = new double[ m_halfLength ];
cannam@0 69 m_thetaAngle = new double[ m_halfLength ];
Chris@115 70 m_unwrapped = new double[ m_halfLength ];
cannam@0 71
cannam@0 72 m_window = new Window<double>(HanningWindow, m_dataLength);
Chris@119 73 m_windowed = new double[ m_dataLength ];
cannam@0 74 }
cannam@0 75
cannam@0 76 void DetectionFunction::deInitialise()
cannam@0 77 {
cannam@2 78 delete [] m_magHistory ;
cannam@2 79 delete [] m_phaseHistory ;
cannam@2 80 delete [] m_phaseHistoryOld ;
cannam@14 81 delete [] m_magPeaks ;
cannam@0 82
cannam@0 83 delete m_phaseVoc;
cannam@0 84
cannam@0 85 delete [] m_magnitude;
cannam@0 86 delete [] m_thetaAngle;
Chris@119 87 delete [] m_windowed;
Chris@119 88 delete [] m_unwrapped;
cannam@0 89
cannam@0 90 delete m_window;
cannam@0 91 }
cannam@0 92
Chris@119 93 double DetectionFunction::processTimeDomain(const double *samples)
cannam@0 94 {
Chris@119 95 m_window->cut(samples, m_windowed);
cannam@55 96
Chris@119 97 m_phaseVoc->processTimeDomain(m_windowed,
Chris@119 98 m_magnitude, m_thetaAngle, m_unwrapped);
cannam@0 99
cannam@14 100 if (m_whiten) whiten();
cannam@14 101
cannam@2 102 return runDF();
cannam@2 103 }
cannam@2 104
Chris@119 105 double DetectionFunction::processFrequencyDomain(const double *reals,
Chris@119 106 const double *imags)
cannam@2 107 {
Chris@119 108 m_phaseVoc->processFrequencyDomain(reals, imags,
Chris@119 109 m_magnitude, m_thetaAngle, m_unwrapped);
cannam@2 110
cannam@14 111 if (m_whiten) whiten();
cannam@14 112
cannam@2 113 return runDF();
cannam@2 114 }
cannam@2 115
cannam@14 116 void DetectionFunction::whiten()
cannam@14 117 {
cannam@14 118 for (unsigned int i = 0; i < m_halfLength; ++i) {
cannam@14 119 double m = m_magnitude[i];
cannam@14 120 if (m < m_magPeaks[i]) {
cannam@14 121 m = m + (m_magPeaks[i] - m) * m_whitenRelaxCoeff;
cannam@14 122 }
cannam@14 123 if (m < m_whitenFloor) m = m_whitenFloor;
cannam@14 124 m_magPeaks[i] = m;
cannam@14 125 m_magnitude[i] /= m;
cannam@14 126 }
cannam@14 127 }
cannam@14 128
cannam@2 129 double DetectionFunction::runDF()
cannam@2 130 {
cannam@2 131 double retVal = 0;
cannam@2 132
cannam@0 133 switch( m_DFType )
cannam@0 134 {
cannam@0 135 case DF_HFC:
cannam@0 136 retVal = HFC( m_halfLength, m_magnitude);
cannam@0 137 break;
cannam@0 138
cannam@13 139 case DF_SPECDIFF:
cannam@0 140 retVal = specDiff( m_halfLength, m_magnitude);
cannam@0 141 break;
cannam@0 142
cannam@0 143 case DF_PHASEDEV:
Chris@120 144 // Using the instantaneous phases here actually provides the
Chris@120 145 // same results (for these calculations) as if we had used
Chris@120 146 // unwrapped phases, but without the possible accumulation of
Chris@120 147 // phase error over time
cannam@14 148 retVal = phaseDev( m_halfLength, m_thetaAngle);
cannam@0 149 break;
cannam@0 150
cannam@0 151 case DF_COMPLEXSD:
cannam@0 152 retVal = complexSD( m_halfLength, m_magnitude, m_thetaAngle);
cannam@0 153 break;
cannam@12 154
cannam@12 155 case DF_BROADBAND:
cannam@14 156 retVal = broadband( m_halfLength, m_magnitude);
cannam@14 157 break;
cannam@0 158 }
cannam@0 159
cannam@0 160 return retVal;
cannam@0 161 }
cannam@0 162
cannam@0 163 double DetectionFunction::HFC(unsigned int length, double *src)
cannam@0 164 {
cannam@0 165 unsigned int i;
cannam@0 166 double val = 0;
cannam@0 167
cannam@0 168 for( i = 0; i < length; i++)
cannam@0 169 {
cannam@0 170 val += src[ i ] * ( i + 1);
cannam@0 171 }
cannam@0 172 return val;
cannam@0 173 }
cannam@0 174
cannam@0 175 double DetectionFunction::specDiff(unsigned int length, double *src)
cannam@0 176 {
cannam@0 177 unsigned int i;
cannam@0 178 double val = 0.0;
cannam@0 179 double temp = 0.0;
cannam@0 180 double diff = 0.0;
cannam@0 181
cannam@0 182 for( i = 0; i < length; i++)
cannam@0 183 {
cannam@2 184 temp = fabs( (src[ i ] * src[ i ]) - (m_magHistory[ i ] * m_magHistory[ i ]) );
cannam@0 185
cannam@0 186 diff= sqrt(temp);
cannam@0 187
cannam@13 188 // (See note in phaseDev below.)
cannam@13 189
cannam@13 190 val += diff;
cannam@0 191
cannam@2 192 m_magHistory[ i ] = src[ i ];
cannam@0 193 }
cannam@0 194
cannam@0 195 return val;
cannam@0 196 }
cannam@0 197
cannam@0 198
cannam@14 199 double DetectionFunction::phaseDev(unsigned int length, double *srcPhase)
cannam@0 200 {
cannam@0 201 unsigned int i;
cannam@0 202 double tmpPhase = 0;
cannam@0 203 double tmpVal = 0;
cannam@0 204 double val = 0;
cannam@0 205
cannam@0 206 double dev = 0;
cannam@0 207
cannam@0 208 for( i = 0; i < length; i++)
cannam@0 209 {
cannam@2 210 tmpPhase = (srcPhase[ i ]- 2*m_phaseHistory[ i ]+m_phaseHistoryOld[ i ]);
cannam@0 211 dev = MathUtilities::princarg( tmpPhase );
cannam@13 212
cannam@13 213 // A previous version of this code only counted the value here
cannam@13 214 // if the magnitude exceeded 0.1. My impression is that
cannam@13 215 // doesn't greatly improve the results for "loud" music (so
cannam@13 216 // long as the peak picker is reasonably sophisticated), but
cannam@13 217 // does significantly damage its ability to work with quieter
cannam@13 218 // music, so I'm removing it and counting the result always.
cannam@13 219 // Same goes for the spectral difference measure above.
cannam@0 220
cannam@13 221 tmpVal = fabs(dev);
cannam@13 222 val += tmpVal ;
cannam@0 223
cannam@2 224 m_phaseHistoryOld[ i ] = m_phaseHistory[ i ] ;
cannam@2 225 m_phaseHistory[ i ] = srcPhase[ i ];
cannam@0 226 }
cannam@0 227
cannam@0 228 return val;
cannam@0 229 }
cannam@0 230
cannam@0 231
cannam@0 232 double DetectionFunction::complexSD(unsigned int length, double *srcMagnitude, double *srcPhase)
cannam@0 233 {
cannam@0 234 unsigned int i;
cannam@0 235 double val = 0;
cannam@0 236 double tmpPhase = 0;
cannam@0 237 double tmpReal = 0;
cannam@0 238 double tmpImag = 0;
cannam@0 239
cannam@0 240 double dev = 0;
cannam@0 241 ComplexData meas = ComplexData( 0, 0 );
cannam@2 242 ComplexData j = ComplexData( 0, 1 );
cannam@0 243
cannam@0 244 for( i = 0; i < length; i++)
cannam@0 245 {
cannam@2 246 tmpPhase = (srcPhase[ i ]- 2*m_phaseHistory[ i ]+m_phaseHistoryOld[ i ]);
cannam@0 247 dev= MathUtilities::princarg( tmpPhase );
cannam@0 248
cannam@2 249 meas = m_magHistory[i] - ( srcMagnitude[ i ] * exp( j * dev) );
cannam@0 250
cannam@0 251 tmpReal = real( meas );
cannam@0 252 tmpImag = imag( meas );
cannam@0 253
cannam@0 254 val += sqrt( (tmpReal * tmpReal) + (tmpImag * tmpImag) );
cannam@0 255
cannam@2 256 m_phaseHistoryOld[ i ] = m_phaseHistory[ i ] ;
cannam@2 257 m_phaseHistory[ i ] = srcPhase[ i ];
cannam@2 258 m_magHistory[ i ] = srcMagnitude[ i ];
cannam@0 259 }
cannam@0 260
cannam@0 261 return val;
cannam@0 262 }
cannam@0 263
cannam@14 264 double DetectionFunction::broadband(unsigned int length, double *src)
cannam@12 265 {
cannam@12 266 double val = 0;
cannam@12 267 for (unsigned int i = 0; i < length; ++i) {
cannam@14 268 double sqrmag = src[i] * src[i];
cannam@12 269 if (m_magHistory[i] > 0.0) {
cannam@12 270 double diff = 10.0 * log10(sqrmag / m_magHistory[i]);
cannam@12 271 if (diff > m_dbRise) val = val + 1;
cannam@12 272 }
cannam@12 273 m_magHistory[i] = sqrmag;
cannam@12 274 }
cannam@12 275 return val;
cannam@12 276 }
cannam@12 277
cannam@0 278 double* DetectionFunction::getSpectrumMagnitude()
cannam@0 279 {
cannam@0 280 return m_magnitude;
cannam@0 281 }
cannam@0 282