Chris@117
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@112
|
2
|
Chris@112
|
3 #include "dsp/phasevocoder/PhaseVocoder.h"
|
Chris@112
|
4
|
Chris@112
|
5 #include "base/Window.h"
|
Chris@112
|
6
|
Chris@117
|
7 #include <iostream>
|
Chris@117
|
8
|
Chris@117
|
9 using std::cerr;
|
Chris@117
|
10 using std::endl;
|
Chris@117
|
11
|
Chris@112
|
12 #define BOOST_TEST_DYN_LINK
|
Chris@112
|
13 #define BOOST_TEST_MAIN
|
Chris@112
|
14
|
Chris@112
|
15 #include <boost/test/unit_test.hpp>
|
Chris@112
|
16
|
Chris@112
|
17 BOOST_AUTO_TEST_SUITE(TestFFT)
|
Chris@112
|
18
|
Chris@112
|
19 #define COMPARE_CONST(a, n) \
|
Chris@112
|
20 for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \
|
Chris@117
|
21 BOOST_CHECK_SMALL(a[cmp_i] - n, 1e-7); \
|
Chris@112
|
22 }
|
Chris@112
|
23
|
Chris@112
|
24 #define COMPARE_ARRAY(a, b) \
|
Chris@112
|
25 for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \
|
Chris@117
|
26 BOOST_CHECK_SMALL(a[cmp_i] - b[cmp_i], 1e-7); \
|
Chris@112
|
27 }
|
Chris@112
|
28
|
Chris@112
|
29 #define COMPARE_ARRAY_EXACT(a, b) \
|
Chris@112
|
30 for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \
|
Chris@112
|
31 BOOST_CHECK_EQUAL(a[cmp_i], b[cmp_i]); \
|
Chris@112
|
32 }
|
Chris@112
|
33
|
Chris@112
|
34 BOOST_AUTO_TEST_CASE(fullcycle)
|
Chris@112
|
35 {
|
Chris@115
|
36 // Cosine with one cycle exactly equal to pvoc hopsize. This is
|
Chris@115
|
37 // pretty much the most trivial case -- in fact it's
|
Chris@115
|
38 // indistinguishable from totally silent input (in the phase
|
Chris@115
|
39 // values) because the measured phases are zero throughout.
|
Chris@115
|
40
|
Chris@115
|
41 // We aren't windowing the input frame because (for once) it
|
Chris@115
|
42 // actually *is* just a short part of a continuous infinite
|
Chris@115
|
43 // sinusoid.
|
Chris@112
|
44
|
Chris@112
|
45 double frame[] = { 1, 0, -1, 0, 1, 0, -1, 0 };
|
Chris@112
|
46
|
Chris@115
|
47 PhaseVocoder pvoc(8, 4);
|
Chris@112
|
48
|
Chris@112
|
49 // Make these arrays one element too long at each end, so as to
|
Chris@112
|
50 // test for overruns. For frame size 8, we expect 8/2+1 = 5
|
Chris@112
|
51 // mag/phase pairs.
|
Chris@112
|
52 double mag[] = { 999, 999, 999, 999, 999, 999, 999 };
|
Chris@112
|
53 double phase[] = { 999, 999, 999, 999, 999, 999, 999 };
|
Chris@115
|
54 double unw[] = { 999, 999, 999, 999, 999, 999, 999 };
|
Chris@112
|
55
|
Chris@119
|
56 pvoc.processTimeDomain(frame, mag + 1, phase + 1, unw + 1);
|
Chris@112
|
57
|
Chris@112
|
58 double magExpected0[] = { 999, 0, 0, 4, 0, 0, 999 };
|
Chris@112
|
59 COMPARE_ARRAY_EXACT(mag, magExpected0);
|
Chris@112
|
60
|
Chris@112
|
61 double phaseExpected0[] = { 999, 0, 0, 0, 0, 0, 999 };
|
Chris@119
|
62 COMPARE_ARRAY(phase, phaseExpected0);
|
Chris@112
|
63
|
Chris@115
|
64 double unwExpected0[] = { 999, 0, 0, 0, 0, 0, 999 };
|
Chris@115
|
65 COMPARE_ARRAY(unw, unwExpected0);
|
Chris@115
|
66
|
Chris@119
|
67 pvoc.processTimeDomain(frame, mag + 1, phase + 1, unw + 1);
|
Chris@112
|
68
|
Chris@112
|
69 double magExpected1[] = { 999, 0, 0, 4, 0, 0, 999 };
|
Chris@112
|
70 COMPARE_ARRAY_EXACT(mag, magExpected1);
|
Chris@112
|
71
|
Chris@115
|
72 double phaseExpected1[] = { 999, 0, 0, 0, 0, 0, 999 };
|
Chris@112
|
73 COMPARE_ARRAY(phase, phaseExpected1);
|
Chris@113
|
74
|
Chris@117
|
75 // Derivation of unwrapped values:
|
Chris@115
|
76 //
|
Chris@115
|
77 // * Bin 0 (DC) always has phase 0 and expected phase 0
|
Chris@115
|
78 //
|
Chris@115
|
79 // * Bin 1 has expected phase pi (the hop size is half a cycle at
|
Chris@115
|
80 // its frequency), but measured phase 0 (because there is no
|
Chris@115
|
81 // signal in that bin). So it has phase error -pi, which is
|
Chris@115
|
82 // mapped into (-pi,pi] range as pi, giving an unwrapped phase
|
Chris@115
|
83 // of 2*pi.
|
Chris@115
|
84 //
|
Chris@119
|
85 // * Bin 2 has expected phase 2*pi, measured phase 0, hence error
|
Chris@119
|
86 // 0 and unwrapped phase 2*pi.
|
Chris@115
|
87 //
|
Chris@115
|
88 // * Bin 3 is like bin 1: it has expected phase 3*pi, measured
|
Chris@115
|
89 // phase 0, so phase error -pi and unwrapped phase 4*pi.
|
Chris@115
|
90 //
|
Chris@119
|
91 // * Bin 4 (Nyquist) has expected phase 4*pi, measured phase 0,
|
Chris@119
|
92 // hence error 0 and unwrapped phase 4*pi.
|
Chris@115
|
93
|
Chris@115
|
94 double unwExpected1[] = { 999, 0, 2*M_PI, 2*M_PI, 4*M_PI, 4*M_PI, 999 };
|
Chris@115
|
95 COMPARE_ARRAY(unw, unwExpected1);
|
Chris@115
|
96
|
Chris@119
|
97 pvoc.processTimeDomain(frame, mag + 1, phase + 1, unw + 1);
|
Chris@113
|
98
|
Chris@113
|
99 double magExpected2[] = { 999, 0, 0, 4, 0, 0, 999 };
|
Chris@113
|
100 COMPARE_ARRAY_EXACT(mag, magExpected2);
|
Chris@113
|
101
|
Chris@115
|
102 double phaseExpected2[] = { 999, 0, 0, 0, 0, 0, 999 };
|
Chris@113
|
103 COMPARE_ARRAY(phase, phaseExpected2);
|
Chris@115
|
104
|
Chris@115
|
105 double unwExpected2[] = { 999, 0, 4*M_PI, 4*M_PI, 8*M_PI, 8*M_PI, 999 };
|
Chris@115
|
106 COMPARE_ARRAY(unw, unwExpected2);
|
Chris@112
|
107 }
|
Chris@112
|
108
|
Chris@117
|
109 BOOST_AUTO_TEST_CASE(overlapping)
|
Chris@117
|
110 {
|
Chris@117
|
111 // Sine (i.e. cosine starting at phase -pi/2) starting with the
|
Chris@117
|
112 // first sample, introducing a cosine of half the frequency
|
Chris@117
|
113 // starting at the fourth sample, i.e. the second hop. The cosine
|
Chris@117
|
114 // is introduced "by magic", i.e. it doesn't appear in the second
|
Chris@117
|
115 // half of the first frame (it would have quite strange effects on
|
Chris@117
|
116 // the first frame if it did).
|
Chris@115
|
117
|
Chris@117
|
118 double data[32] = { // 3 x 8-sample frames which we pretend are overlapping
|
Chris@117
|
119 0, 1, 0, -1, 0, 1, 0, -1,
|
Chris@117
|
120 1, 1.70710678, 0, -1.70710678, -1, 0.29289322, 0, -0.29289322,
|
Chris@117
|
121 -1, 0.29289322, 0, -0.29289322, 1, 1.70710678, 0, -1.70710678,
|
Chris@117
|
122 };
|
Chris@117
|
123
|
Chris@117
|
124 PhaseVocoder pvoc(8, 4);
|
Chris@117
|
125
|
Chris@117
|
126 // Make these arrays one element too long at each end, so as to
|
Chris@117
|
127 // test for overruns. For frame size 8, we expect 8/2+1 = 5
|
Chris@117
|
128 // mag/phase pairs.
|
Chris@117
|
129 double mag[] = { 999, 999, 999, 999, 999, 999, 999 };
|
Chris@117
|
130 double phase[] = { 999, 999, 999, 999, 999, 999, 999 };
|
Chris@117
|
131 double unw[] = { 999, 999, 999, 999, 999, 999, 999 };
|
Chris@117
|
132
|
Chris@119
|
133 pvoc.processTimeDomain(data, mag + 1, phase + 1, unw + 1);
|
Chris@117
|
134
|
Chris@117
|
135 double magExpected0[] = { 999, 0, 0, 4, 0, 0, 999 };
|
Chris@117
|
136 COMPARE_ARRAY(mag, magExpected0);
|
Chris@117
|
137
|
Chris@117
|
138 double phaseExpected0[] = { 999, 0, 0, -M_PI/2 , 0, 0, 999 };
|
Chris@117
|
139 COMPARE_ARRAY(phase, phaseExpected0);
|
Chris@117
|
140
|
Chris@117
|
141 double unwExpected0[] = { 999, 0, 0, -M_PI/2, 0, 0, 999 };
|
Chris@117
|
142 COMPARE_ARRAY(unw, unwExpected0);
|
Chris@117
|
143
|
Chris@119
|
144 pvoc.processTimeDomain(data + 8, mag + 1, phase + 1, unw + 1);
|
Chris@117
|
145
|
Chris@117
|
146 double magExpected1[] = { 999, 0, 4, 4, 0, 0, 999 };
|
Chris@117
|
147 COMPARE_ARRAY(mag, magExpected1);
|
Chris@117
|
148
|
Chris@117
|
149 //!!! I don't know why [2] here is -M_PI and not M_PI; and I definitely don't know why [4] here is M_PI. Check these with care
|
Chris@119
|
150
|
Chris@119
|
151 // Derivation of unwrapped values:
|
Chris@119
|
152 //
|
Chris@119
|
153 // * Bin 0 (DC) always has phase 0 and expected phase 0
|
Chris@119
|
154 //
|
Chris@119
|
155 // * Bin 1 has a new signal, a cosine starting with phase 0. But
|
Chris@119
|
156 // because of the "FFT shift" which the phase vocoder carries
|
Chris@119
|
157 // out to place zero phase in the centre of the (usually
|
Chris@119
|
158 // windowed) frame, and because a single cycle at this frequency
|
Chris@119
|
159 // spans the whole frame, this bin actually has measured phase
|
Chris@119
|
160 // of either pi or -pi. (The shift doesn't affect those
|
Chris@119
|
161 // higher-frequency bins whose signals fit exact multiples of a
|
Chris@119
|
162 // cycle into a frame.) This maps into (-pi,pi] as pi, which
|
Chris@119
|
163 // matches the expected phase, hence unwrapped phase is also pi.
|
Chris@119
|
164 //
|
Chris@119
|
165 // * Bin 2 has expected phase 3pi/2 (being the previous measured
|
Chris@119
|
166 // phase of -pi/2 plus advance of 2pi). It has the same measured
|
Chris@119
|
167 // phase as last time around, -pi/2, which is consistent with
|
Chris@119
|
168 // the expected phase, so the unwrapped phase is 3pi/2.
|
Chris@119
|
169 //!!!
|
Chris@119
|
170 // * Bin 3 is a bit of a puzzle -- it has an effectively zero
|
Chris@119
|
171 // magnitude but a non-zero measured phase. Spectral leakage?
|
Chris@119
|
172 //
|
Chris@119
|
173 // * Bin 4 (Nyquist) has expected phase 4*pi, measured phase 0,
|
Chris@119
|
174 // hence error 0 and unwrapped phase 4*pi.
|
Chris@119
|
175
|
Chris@117
|
176 double phaseExpected1[] = { 999, 0, -M_PI, -M_PI/2, M_PI, 0, 999 };
|
Chris@117
|
177 COMPARE_ARRAY(phase, phaseExpected1);
|
Chris@117
|
178
|
Chris@117
|
179 double unwExpected1[] = { 999, 0, M_PI, 3*M_PI/2, 3*M_PI, 4*M_PI, 999 };
|
Chris@117
|
180 COMPARE_ARRAY(unw, unwExpected1);
|
Chris@117
|
181
|
Chris@119
|
182 pvoc.processTimeDomain(data + 16, mag + 1, phase + 1, unw + 1);
|
Chris@117
|
183
|
Chris@117
|
184 double magExpected2[] = { 999, 0, 4, 4, 0, 0, 999 };
|
Chris@117
|
185 COMPARE_ARRAY(mag, magExpected2);
|
Chris@117
|
186
|
Chris@117
|
187 double phaseExpected2[] = { 999, 0, 0, -M_PI/2, 0, 0, 999 };
|
Chris@117
|
188 COMPARE_ARRAY(phase, phaseExpected2);
|
Chris@117
|
189
|
Chris@117
|
190 double unwExpected2[] = { 999, 0, 2*M_PI, 7*M_PI/2, 6*M_PI, 8*M_PI, 999 };
|
Chris@117
|
191 COMPARE_ARRAY(unw, unwExpected2);
|
Chris@117
|
192 }
|
Chris@115
|
193
|
Chris@112
|
194 BOOST_AUTO_TEST_SUITE_END()
|
Chris@112
|
195
|