annotate dsp/transforms/FFT.cpp @ 295:1c9258dd155e

* build fixes for win32-x-g++
author Chris Cannam <c.cannam@qmul.ac.uk>
date Tue, 02 Jun 2009 09:53:01 +0000
parents 37bbd2f605f8
children dcb555b90924
rev   line source
c@225 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@225 2
c@225 3 /*
c@225 4 QM DSP Library
c@225 5
c@225 6 Centre for Digital Music, Queen Mary, University of London.
c@225 7 This file is based on Don Cross's public domain FFT implementation.
c@225 8 */
c@225 9
c@225 10 #include "FFT.h"
c@280 11
c@280 12 #include "maths/MathUtilities.h"
c@280 13
c@225 14 #include <cmath>
c@225 15
c@280 16 #include <iostream>
c@280 17
c@290 18 //#define USE_BUILTIN_FFT 1
c@225 19
c@289 20 #ifdef USE_BUILTIN_FFT
c@289 21
c@289 22 FFT::FFT(unsigned int n) :
c@289 23 m_n(n),
c@289 24 m_private(0)
c@225 25 {
c@289 26 if( !MathUtilities::isPowerOfTwo(m_n) )
c@289 27 {
c@289 28 std::cerr << "ERROR: FFT: Non-power-of-two FFT size "
c@289 29 << m_n << " not supported in this implementation"
c@289 30 << std::endl;
c@289 31 return;
c@289 32 }
c@225 33 }
c@225 34
c@225 35 FFT::~FFT()
c@225 36 {
c@225 37
c@225 38 }
c@225 39
c@289 40 FFTReal::FFTReal(unsigned int n) :
c@289 41 m_n(n),
c@289 42 m_private(0)
c@225 43 {
c@289 44 m_private = new FFT(m_n);
c@289 45 }
c@225 46
c@289 47 FFTReal::~FFTReal()
c@289 48 {
c@289 49 delete (FFT *)m_private;
c@289 50 }
c@289 51
c@289 52 void
c@289 53 FFTReal::process(bool inverse,
c@289 54 const double *realIn,
c@289 55 double *realOut, double *imagOut)
c@289 56 {
c@289 57 ((FFT *)m_private)->process(inverse, realIn, 0, realOut, imagOut);
c@289 58 }
c@289 59
c@289 60 static unsigned int numberOfBitsNeeded(unsigned int p_nSamples)
c@289 61 {
c@289 62 int i;
c@289 63
c@289 64 if( p_nSamples < 2 )
c@289 65 {
c@289 66 return 0;
c@289 67 }
c@289 68
c@289 69 for ( i=0; ; i++ )
c@289 70 {
c@289 71 if( p_nSamples & (1 << i) ) return i;
c@289 72 }
c@289 73 }
c@289 74
c@289 75 static unsigned int reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
c@289 76 {
c@289 77 unsigned int i, rev;
c@289 78
c@289 79 for(i=rev=0; i < p_nBits; i++)
c@289 80 {
c@289 81 rev = (rev << 1) | (p_nIndex & 1);
c@289 82 p_nIndex >>= 1;
c@289 83 }
c@289 84
c@289 85 return rev;
c@289 86 }
c@289 87
c@289 88 void
c@289 89 FFT::process(bool p_bInverseTransform,
c@289 90 const double *p_lpRealIn, const double *p_lpImagIn,
c@289 91 double *p_lpRealOut, double *p_lpImagOut)
c@289 92 {
c@291 93 if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
c@291 94
c@291 95 // std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl;
c@225 96
c@225 97 unsigned int NumBits;
c@225 98 unsigned int i, j, k, n;
c@225 99 unsigned int BlockSize, BlockEnd;
c@225 100
c@225 101 double angle_numerator = 2.0 * M_PI;
c@225 102 double tr, ti;
c@225 103
c@289 104 if( !MathUtilities::isPowerOfTwo(m_n) )
c@225 105 {
c@280 106 std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
c@289 107 << m_n << " not supported in this implementation"
c@280 108 << std::endl;
c@225 109 return;
c@225 110 }
c@225 111
c@225 112 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
c@225 113
c@289 114 NumBits = numberOfBitsNeeded ( m_n );
c@225 115
c@225 116
c@289 117 for( i=0; i < m_n; i++ )
c@225 118 {
c@225 119 j = reverseBits ( i, NumBits );
c@225 120 p_lpRealOut[j] = p_lpRealIn[i];
c@225 121 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
c@225 122 }
c@225 123
c@225 124
c@225 125 BlockEnd = 1;
c@289 126 for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 )
c@225 127 {
c@225 128 double delta_angle = angle_numerator / (double)BlockSize;
c@225 129 double sm2 = -sin ( -2 * delta_angle );
c@225 130 double sm1 = -sin ( -delta_angle );
c@225 131 double cm2 = cos ( -2 * delta_angle );
c@225 132 double cm1 = cos ( -delta_angle );
c@225 133 double w = 2 * cm1;
c@225 134 double ar[3], ai[3];
c@225 135
c@289 136 for( i=0; i < m_n; i += BlockSize )
c@225 137 {
c@225 138
c@225 139 ar[2] = cm2;
c@225 140 ar[1] = cm1;
c@225 141
c@225 142 ai[2] = sm2;
c@225 143 ai[1] = sm1;
c@225 144
c@225 145 for ( j=i, n=0; n < BlockEnd; j++, n++ )
c@225 146 {
c@225 147
c@225 148 ar[0] = w*ar[1] - ar[2];
c@225 149 ar[2] = ar[1];
c@225 150 ar[1] = ar[0];
c@225 151
c@225 152 ai[0] = w*ai[1] - ai[2];
c@225 153 ai[2] = ai[1];
c@225 154 ai[1] = ai[0];
c@225 155
c@225 156 k = j + BlockEnd;
c@225 157 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
c@225 158 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
c@225 159
c@225 160 p_lpRealOut[k] = p_lpRealOut[j] - tr;
c@225 161 p_lpImagOut[k] = p_lpImagOut[j] - ti;
c@225 162
c@225 163 p_lpRealOut[j] += tr;
c@225 164 p_lpImagOut[j] += ti;
c@225 165
c@225 166 }
c@225 167 }
c@225 168
c@225 169 BlockEnd = BlockSize;
c@225 170
c@225 171 }
c@225 172
c@225 173
c@225 174 if( p_bInverseTransform )
c@225 175 {
c@289 176 double denom = (double)m_n;
c@225 177
c@289 178 for ( i=0; i < m_n; i++ )
c@225 179 {
c@225 180 p_lpRealOut[i] /= denom;
c@225 181 p_lpImagOut[i] /= denom;
c@225 182 }
c@225 183 }
c@225 184 }
c@225 185
c@289 186 #else
c@225 187
c@289 188 #include "kissfft/kiss_fft.h"
c@289 189 #include "kissfft/kiss_fftr.h"
c@225 190
c@290 191 struct KissFFTRec {
c@290 192 kiss_fft_cfg forward;
c@290 193 kiss_fft_cfg inverse;
c@290 194 kiss_fft_cpx *in;
c@290 195 kiss_fft_cpx *out;
c@290 196 };
c@290 197
c@290 198 FFT::FFT(unsigned int n) :
c@290 199 m_n(n),
c@290 200 m_private(0)
c@290 201 {
c@290 202 KissFFTRec *rec = new KissFFTRec;
c@290 203 rec->forward = kiss_fft_alloc(m_n, 0, 0, 0);
c@290 204 rec->inverse = kiss_fft_alloc(m_n, 1, 0, 0);
c@290 205 rec->in = new kiss_fft_cpx[m_n];
c@290 206 rec->out = new kiss_fft_cpx[m_n];
c@290 207 m_private = rec;
c@290 208 }
c@290 209
c@290 210 FFT::~FFT()
c@290 211 {
c@290 212 KissFFTRec *rec = (KissFFTRec *)m_private;
c@290 213 kiss_fft_free(rec->forward);
c@290 214 kiss_fft_free(rec->inverse);
c@290 215 delete[] rec->in;
c@290 216 delete[] rec->out;
c@290 217 }
c@290 218
c@290 219 void
c@290 220 FFT::process(bool inverse,
c@290 221 const double *rin, const double *iin,
c@290 222 double *rout, double *iout)
c@290 223 {
c@290 224 KissFFTRec *rec = (KissFFTRec *)m_private;
c@290 225 for (int i = 0; i < m_n; ++i) {
c@290 226 rec->in[i].r = rin[i];
c@290 227 }
c@290 228 if (iin) {
c@290 229 for (int i = 0; i < m_n; ++i) {
c@290 230 rec->in[i].i = iin[i];
c@290 231 }
c@290 232 } else {
c@290 233 for (int i = 0; i < m_n; ++i) {
c@290 234 rec->in[i].i = 0.0;
c@290 235 }
c@290 236 }
c@290 237 if (inverse) {
c@290 238 kiss_fft(rec->inverse, rec->in, rec->out);
c@290 239 } else {
c@290 240 kiss_fft(rec->forward, rec->in, rec->out);
c@290 241 }
c@290 242 for (int i = 0; i < m_n; ++i) {
c@290 243 rout[i] = rec->out[i].r;
c@290 244 iout[i] = rec->out[i].i;
c@290 245 }
c@290 246 }
c@290 247
c@290 248 struct KissFFTRealRec {
c@290 249 kiss_fftr_cfg forward;
c@290 250 kiss_fftr_cfg inverse;
c@290 251 kiss_fft_cpx *out;
c@290 252 };
c@290 253
c@290 254 FFTReal::FFTReal(unsigned int n) :
c@290 255 m_n(n),
c@290 256 m_private(0)
c@290 257 {
c@290 258 KissFFTRealRec *rec = new KissFFTRealRec;
c@290 259 rec->forward = kiss_fftr_alloc(m_n, 0, 0, 0);
c@290 260 rec->inverse = kiss_fftr_alloc(m_n, 1, 0, 0);
c@290 261 rec->out = new kiss_fft_cpx[m_n];
c@290 262 m_private = rec;
c@290 263 }
c@290 264
c@290 265 FFTReal::~FFTReal()
c@290 266 {
c@290 267 KissFFTRealRec *rec = (KissFFTRealRec *)m_private;
c@290 268 kiss_fftr_free(rec->forward);
c@290 269 kiss_fftr_free(rec->inverse);
c@290 270 delete[] rec->out;
c@290 271 }
c@290 272
c@290 273 void
c@290 274 FFTReal::process(bool inverse,
c@290 275 const double *rin,
c@290 276 double *rout, double *iout)
c@290 277 {
c@290 278 KissFFTRealRec *rec = (KissFFTRealRec *)m_private;
c@290 279 if (inverse) {
c@290 280 kiss_fftr(rec->inverse, rin, rec->out);
c@290 281 } else {
c@290 282 kiss_fftr(rec->forward, rin, rec->out);
c@290 283 }
c@290 284 for (int i = 0; i < m_n; ++i) {
c@290 285 rout[i] = rec->out[i].r;
c@290 286 iout[i] = rec->out[i].i;
c@290 287 }
c@290 288 }
c@290 289
c@289 290 #endif