c@243
|
1 /*
|
c@243
|
2 * cluster.c
|
c@243
|
3 * cluster_melt
|
c@243
|
4 *
|
c@243
|
5 * Created by Mark Levy on 21/02/2006.
|
c@309
|
6 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London.
|
c@309
|
7
|
c@309
|
8 This program is free software; you can redistribute it and/or
|
c@309
|
9 modify it under the terms of the GNU General Public License as
|
c@309
|
10 published by the Free Software Foundation; either version 2 of the
|
c@309
|
11 License, or (at your option) any later version. See the file
|
c@309
|
12 COPYING included with this distribution for more information.
|
c@243
|
13 *
|
c@243
|
14 */
|
c@243
|
15
|
c@243
|
16 #include <stdlib.h>
|
c@243
|
17
|
c@243
|
18 #include "cluster_melt.h"
|
c@243
|
19
|
c@243
|
20 #define DEFAULT_LAMBDA 0.02;
|
c@243
|
21 #define DEFAULT_LIMIT 20;
|
c@243
|
22
|
c@243
|
23 double kldist(double* a, double* b, int n) {
|
cannam@480
|
24 /* NB assume that all a[i], b[i] are non-negative
|
cannam@480
|
25 because a, b represent probability distributions */
|
cannam@480
|
26 double q, d;
|
cannam@480
|
27 int i;
|
cannam@480
|
28
|
cannam@480
|
29 d = 0;
|
cannam@480
|
30 for (i = 0; i < n; i++) {
|
cannam@480
|
31 q = (a[i] + b[i]) / 2.0;
|
cannam@480
|
32 if (q > 0) {
|
cannam@480
|
33 if (a[i] > 0) {
|
cannam@480
|
34 d += a[i] * log(a[i] / q);
|
cannam@480
|
35 }
|
cannam@480
|
36 if (b[i] > 0) {
|
cannam@480
|
37 d += b[i] * log(b[i] / q);
|
cannam@480
|
38 }
|
cannam@480
|
39 }
|
cannam@480
|
40 }
|
cannam@480
|
41 return d;
|
cannam@480
|
42 }
|
c@243
|
43
|
c@243
|
44 void cluster_melt(double *h, int m, int n, double *Bsched, int t, int k, int l, int *c) {
|
cannam@480
|
45 double lambda, sum, beta, logsumexp, maxlp;
|
cannam@480
|
46 int i, j, a, b, b0, b1, limit, /* B, */ it, maxiter, maxiter0, maxiter1;
|
cannam@480
|
47 double** cl; /* reference histograms for each cluster */
|
cannam@480
|
48 int** nc; /* neighbour counts for each histogram */
|
cannam@480
|
49 double** lp; /* soft assignment probs for each histogram */
|
cannam@480
|
50 int* oldc; /* previous hard assignments (to check convergence) */
|
cannam@480
|
51
|
cannam@480
|
52 /* NB h is passed as a 1d row major array */
|
cannam@480
|
53
|
cannam@480
|
54 /* parameter values */
|
cannam@480
|
55 lambda = DEFAULT_LAMBDA;
|
cannam@480
|
56 if (l > 0) {
|
cannam@480
|
57 limit = l;
|
cannam@480
|
58 } else {
|
cannam@480
|
59 limit = DEFAULT_LIMIT; /* use default if no valid neighbourhood limit supplied */
|
cannam@480
|
60 }
|
cannam@480
|
61
|
cannam@480
|
62 maxiter0 = 20; /* number of iterations at initial temperature */
|
cannam@480
|
63 maxiter1 = 5; /* number of iterations at subsequent temperatures */
|
cannam@480
|
64
|
cannam@480
|
65 /* allocate memory */
|
cannam@480
|
66 cl = (double**) malloc(k*sizeof(double*));
|
cannam@480
|
67 for (i= 0; i < k; i++) {
|
cannam@480
|
68 cl[i] = (double*) malloc(m*sizeof(double));
|
cannam@480
|
69 }
|
cannam@480
|
70
|
cannam@480
|
71 nc = (int**) malloc(n*sizeof(int*));
|
cannam@480
|
72 for (i= 0; i < n; i++) {
|
cannam@480
|
73 nc[i] = (int*) malloc(k*sizeof(int));
|
cannam@480
|
74 }
|
cannam@480
|
75
|
cannam@480
|
76 lp = (double**) malloc(n*sizeof(double*));
|
cannam@480
|
77 for (i= 0; i < n; i++) {
|
cannam@480
|
78 lp[i] = (double*) malloc(k*sizeof(double));
|
cannam@480
|
79 }
|
cannam@480
|
80
|
cannam@480
|
81 oldc = (int*) malloc(n * sizeof(int));
|
cannam@480
|
82
|
cannam@480
|
83 /* initialise */
|
cannam@480
|
84 for (i = 0; i < k; i++) {
|
cannam@480
|
85 sum = 0;
|
cannam@480
|
86 for (j = 0; j < m; j++) {
|
cannam@480
|
87 cl[i][j] = rand(); /* random initial reference histograms */
|
cannam@480
|
88 sum += cl[i][j] * cl[i][j];
|
cannam@480
|
89 }
|
cannam@480
|
90 sum = sqrt(sum);
|
cannam@480
|
91 for (j = 0; j < m; j++) {
|
cannam@480
|
92 cl[i][j] /= sum; /* normalise */
|
cannam@480
|
93 }
|
cannam@480
|
94 }
|
cannam@480
|
95
|
cannam@480
|
96 for (i = 0; i < n; i++) {
|
cannam@480
|
97 c[i] = 1; /* initially assign all histograms to cluster 1 */
|
cannam@480
|
98 }
|
cannam@480
|
99
|
cannam@480
|
100 for (a = 0; a < t; a++) {
|
cannam@480
|
101
|
cannam@480
|
102 beta = Bsched[a];
|
cannam@480
|
103
|
cannam@480
|
104 if (a == 0) {
|
cannam@480
|
105 maxiter = maxiter0;
|
cannam@480
|
106 } else {
|
cannam@480
|
107 maxiter = maxiter1;
|
cannam@480
|
108 }
|
cannam@480
|
109
|
cannam@480
|
110 for (it = 0; it < maxiter; it++) {
|
cannam@480
|
111
|
cannam@480
|
112 //if (it == maxiter - 1)
|
cannam@480
|
113 // mexPrintf("hasn't converged after %d iterations\n", maxiter);
|
cannam@480
|
114
|
cannam@480
|
115 for (i = 0; i < n; i++) {
|
cannam@480
|
116
|
cannam@480
|
117 /* save current hard assignments */
|
cannam@480
|
118 oldc[i] = c[i];
|
cannam@480
|
119
|
cannam@480
|
120 /* calculate soft assignment logprobs for each cluster */
|
cannam@480
|
121 sum = 0;
|
cannam@480
|
122
|
cannam@480
|
123 for (j = 0; j < k; j++) {
|
cannam@480
|
124
|
cannam@480
|
125 lp[i][ j] = -beta * kldist(cl[j], &h[i*m], m);
|
cannam@480
|
126
|
cannam@480
|
127 /* update matching neighbour counts for this histogram, based on current hard assignments */
|
cannam@480
|
128
|
cannam@480
|
129 b0 = i - limit;
|
cannam@480
|
130 if (b0 < 0) {
|
cannam@480
|
131 b0 = 0;
|
cannam@480
|
132 }
|
cannam@480
|
133 b1 = i + limit;
|
cannam@480
|
134 if (b1 >= n) {
|
cannam@480
|
135 b1 = n - 1;
|
cannam@480
|
136 }
|
cannam@480
|
137 nc[i][j] = b1 - b0 + 1; /* = B except at edges */
|
cannam@480
|
138 for (b = b0; b <= b1; b++) {
|
cannam@480
|
139 if (c[b] == j+1) {
|
cannam@480
|
140 nc[i][j]--;
|
cannam@480
|
141 }
|
cannam@480
|
142 }
|
cannam@480
|
143
|
cannam@480
|
144 sum += exp(lp[i][j]);
|
cannam@480
|
145 }
|
cannam@480
|
146
|
cannam@480
|
147 /* normalise responsibilities and add duration logprior */
|
cannam@480
|
148 logsumexp = log(sum);
|
cannam@480
|
149 for (j = 0; j < k; j++) {a
|
cannam@480
|
150 lp[i][j] -= logsumexp + lambda * nc[i][j];
|
cannam@480
|
151 }
|
cannam@480
|
152 }
|
cannam@480
|
153
|
cannam@480
|
154 /* update the assignments now that we know the duration priors
|
cannam@480
|
155 based on the current assignments */
|
cannam@480
|
156 for (i = 0; i < n; i++) {
|
cannam@480
|
157 maxlp = lp[i][0];
|
cannam@480
|
158 c[i] = 1;
|
cannam@480
|
159 for (j = 1; j < k; j++) {
|
cannam@480
|
160 if (lp[i][j] > maxlp) {
|
cannam@480
|
161 maxlp = lp[i][j];
|
cannam@480
|
162 c[i] = j+1;
|
cannam@480
|
163 }
|
cannam@480
|
164 }
|
cannam@480
|
165 }
|
cannam@480
|
166
|
cannam@480
|
167 /* break if assignments haven't changed */
|
cannam@480
|
168 i = 0;
|
cannam@480
|
169 while (i < n && oldc[i] == c[i]) {
|
cannam@480
|
170 i++;
|
cannam@480
|
171 }
|
cannam@480
|
172 if (i == n) {
|
cannam@480
|
173 break;
|
cannam@480
|
174 }
|
cannam@480
|
175
|
cannam@480
|
176 /* update reference histograms now we know new responsibilities */
|
cannam@480
|
177 for (j = 0; j < k; j++) {
|
cannam@480
|
178 for (b = 0; b < m; b++) {
|
cannam@480
|
179 cl[j][b] = 0;
|
cannam@480
|
180 for (i = 0; i < n; i++) {
|
cannam@480
|
181 cl[j][b] += exp(lp[i][j]) * h[i*m+b];
|
cannam@480
|
182 }
|
cannam@480
|
183 }
|
cannam@480
|
184
|
cannam@480
|
185 sum = 0;
|
cannam@480
|
186 for (i = 0; i < n; i++) {
|
cannam@480
|
187 sum += exp(lp[i][j]);
|
cannam@480
|
188 }
|
cannam@480
|
189 for (b = 0; b < m; b++) {
|
cannam@480
|
190 cl[j][b] /= sum; /* normalise */
|
cannam@480
|
191 }
|
cannam@480
|
192 }
|
cannam@480
|
193 }
|
cannam@480
|
194 }
|
cannam@480
|
195
|
cannam@480
|
196 /* free memory */
|
cannam@480
|
197 for (i = 0; i < k; i++) {
|
cannam@480
|
198 free(cl[i]);
|
cannam@480
|
199 }
|
cannam@480
|
200 free(cl);
|
cannam@480
|
201 for (i = 0; i < n; i++) {
|
cannam@480
|
202 free(nc[i]);
|
cannam@480
|
203 }
|
cannam@480
|
204 free(nc);
|
cannam@480
|
205 for (i = 0; i < n; i++) {
|
cannam@480
|
206 free(lp[i]);
|
cannam@480
|
207 }
|
cannam@480
|
208 free(lp);
|
cannam@480
|
209 free(oldc);
|
c@243
|
210 }
|
c@243
|
211
|
c@243
|
212
|