nikcleju@2
|
1 % l1qc_logbarrier.m
|
nikcleju@2
|
2 %
|
nikcleju@2
|
3 % Solve quadratically constrained l1 minimization:
|
nikcleju@2
|
4 % min ||x||_1 s.t. ||Ax - b||_2 <= \epsilon
|
nikcleju@2
|
5 %
|
nikcleju@2
|
6 % Reformulate as the second-order cone program
|
nikcleju@2
|
7 % min_{x,u} sum(u) s.t. x - u <= 0,
|
nikcleju@2
|
8 % -x - u <= 0,
|
nikcleju@2
|
9 % 1/2(||Ax-b||^2 - \epsilon^2) <= 0
|
nikcleju@2
|
10 % and use a log barrier algorithm.
|
nikcleju@2
|
11 %
|
nikcleju@2
|
12 % Usage: xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
|
nikcleju@2
|
13 %
|
nikcleju@2
|
14 % x0 - Nx1 vector, initial point.
|
nikcleju@2
|
15 %
|
nikcleju@2
|
16 % A - Either a handle to a function that takes a N vector and returns a K
|
nikcleju@2
|
17 % vector , or a KxN matrix. If A is a function handle, the algorithm
|
nikcleju@2
|
18 % operates in "largescale" mode, solving the Newton systems via the
|
nikcleju@2
|
19 % Conjugate Gradients algorithm.
|
nikcleju@2
|
20 %
|
nikcleju@2
|
21 % At - Handle to a function that takes a K vector and returns an N vector.
|
nikcleju@2
|
22 % If A is a KxN matrix, At is ignored.
|
nikcleju@2
|
23 %
|
nikcleju@2
|
24 % b - Kx1 vector of observations.
|
nikcleju@2
|
25 %
|
nikcleju@2
|
26 % epsilon - scalar, constraint relaxation parameter
|
nikcleju@2
|
27 %
|
nikcleju@2
|
28 % lbtol - The log barrier algorithm terminates when the duality gap <= lbtol.
|
nikcleju@2
|
29 % Also, the number of log barrier iterations is completely
|
nikcleju@2
|
30 % determined by lbtol.
|
nikcleju@2
|
31 % Default = 1e-3.
|
nikcleju@2
|
32 %
|
nikcleju@2
|
33 % mu - Factor by which to increase the barrier constant at each iteration.
|
nikcleju@2
|
34 % Default = 10.
|
nikcleju@2
|
35 %
|
nikcleju@2
|
36 % cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
|
nikcleju@2
|
37 % Default = 1e-8.
|
nikcleju@2
|
38 %
|
nikcleju@2
|
39 % cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
|
nikcleju@2
|
40 % if A is a matrix.
|
nikcleju@2
|
41 % Default = 200.
|
nikcleju@2
|
42 %
|
nikcleju@2
|
43 % Written by: Justin Romberg, Caltech
|
nikcleju@2
|
44 % Email: jrom@acm.caltech.edu
|
nikcleju@2
|
45 % Created: October 2005
|
nikcleju@2
|
46 %
|
nikcleju@2
|
47
|
nikcleju@2
|
48 function xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
|
nikcleju@2
|
49
|
nikcleju@2
|
50 largescale = isa(A,'function_handle');
|
nikcleju@2
|
51
|
nikcleju@2
|
52 if (nargin < 6), lbtol = 1e-3; end
|
nikcleju@2
|
53 if (nargin < 7), mu = 10; end
|
nikcleju@2
|
54 if (nargin < 8), cgtol = 1e-8; end
|
nikcleju@2
|
55 if (nargin < 9), cgmaxiter = 200; end
|
nikcleju@2
|
56
|
nikcleju@2
|
57 newtontol = lbtol;
|
nikcleju@2
|
58 newtonmaxiter = 50;
|
nikcleju@2
|
59
|
nikcleju@2
|
60 N = length(x0);
|
nikcleju@2
|
61
|
nikcleju@2
|
62 % starting point --- make sure that it is feasible
|
nikcleju@2
|
63 if (largescale)
|
nikcleju@2
|
64 if (norm(A(x0)-b) > epsilon)
|
nikcleju@2
|
65 disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
|
nikcleju@2
|
66 AAt = @(z) A(At(z));
|
nikcleju@2
|
67 w = cgsolve(AAt, b, cgtol, cgmaxiter, 0);
|
nikcleju@2
|
68 if (cgres > 1/2)
|
nikcleju@2
|
69 disp('A*At is ill-conditioned: cannot find starting point');
|
nikcleju@2
|
70 xp = x0;
|
nikcleju@2
|
71 return;
|
nikcleju@2
|
72 end
|
nikcleju@2
|
73 x0 = At(w);
|
nikcleju@2
|
74 end
|
nikcleju@2
|
75 else
|
nikcleju@2
|
76 if (norm(A*x0-b) > epsilon)
|
nikcleju@2
|
77 disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
|
nikcleju@2
|
78 opts.POSDEF = true; opts.SYM = true;
|
nikcleju@2
|
79 [w, hcond] = linsolve(A*A', b, opts);
|
nikcleju@2
|
80 if (hcond < 1e-14)
|
nikcleju@2
|
81 disp('A*At is ill-conditioned: cannot find starting point');
|
nikcleju@2
|
82 xp = x0;
|
nikcleju@2
|
83 return;
|
nikcleju@2
|
84 end
|
nikcleju@2
|
85 x0 = A'*w;
|
nikcleju@2
|
86 end
|
nikcleju@2
|
87 end
|
nikcleju@2
|
88 x = x0;
|
nikcleju@2
|
89 u = (0.95)*abs(x0) + (0.10)*max(abs(x0));
|
nikcleju@2
|
90
|
nikcleju@2
|
91 disp(sprintf('Original l1 norm = %.3f, original functional = %.3f', sum(abs(x0)), sum(u)));
|
nikcleju@2
|
92
|
nikcleju@2
|
93 % choose initial value of tau so that the duality gap after the first
|
nikcleju@2
|
94 % step will be about the origial norm
|
nikcleju@2
|
95 tau = max((2*N+1)/sum(abs(x0)), 1);
|
nikcleju@2
|
96
|
nikcleju@2
|
97 lbiter = ceil((log(2*N+1)-log(lbtol)-log(tau))/log(mu));
|
nikcleju@2
|
98 disp(sprintf('Number of log barrier iterations = %d\n', lbiter));
|
nikcleju@2
|
99
|
nikcleju@2
|
100 totaliter = 0;
|
nikcleju@2
|
101
|
nikcleju@2
|
102 % Added by Nic
|
nikcleju@2
|
103 if lbiter == 0
|
nikcleju@2
|
104 xp = zeros(size(x0));
|
nikcleju@2
|
105 end
|
nikcleju@2
|
106
|
nikcleju@2
|
107 for ii = 1:lbiter
|
nikcleju@2
|
108
|
nikcleju@2
|
109 [xp, up, ntiter] = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter);
|
nikcleju@2
|
110 totaliter = totaliter + ntiter;
|
nikcleju@2
|
111
|
nikcleju@2
|
112 disp(sprintf('\nLog barrier iter = %d, l1 = %.3f, functional = %8.3f, tau = %8.3e, total newton iter = %d\n', ...
|
nikcleju@2
|
113 ii, sum(abs(xp)), sum(up), tau, totaliter));
|
nikcleju@2
|
114
|
nikcleju@2
|
115 x = xp;
|
nikcleju@2
|
116 u = up;
|
nikcleju@2
|
117
|
nikcleju@2
|
118 tau = mu*tau;
|
nikcleju@2
|
119
|
nikcleju@2
|
120 end
|
nikcleju@2
|
121
|