nikcleju@2: % l1qc_logbarrier.m nikcleju@2: % nikcleju@2: % Solve quadratically constrained l1 minimization: nikcleju@2: % min ||x||_1 s.t. ||Ax - b||_2 <= \epsilon nikcleju@2: % nikcleju@2: % Reformulate as the second-order cone program nikcleju@2: % min_{x,u} sum(u) s.t. x - u <= 0, nikcleju@2: % -x - u <= 0, nikcleju@2: % 1/2(||Ax-b||^2 - \epsilon^2) <= 0 nikcleju@2: % and use a log barrier algorithm. nikcleju@2: % nikcleju@2: % Usage: xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter) nikcleju@2: % nikcleju@2: % x0 - Nx1 vector, initial point. nikcleju@2: % nikcleju@2: % A - Either a handle to a function that takes a N vector and returns a K nikcleju@2: % vector , or a KxN matrix. If A is a function handle, the algorithm nikcleju@2: % operates in "largescale" mode, solving the Newton systems via the nikcleju@2: % Conjugate Gradients algorithm. nikcleju@2: % nikcleju@2: % At - Handle to a function that takes a K vector and returns an N vector. nikcleju@2: % If A is a KxN matrix, At is ignored. nikcleju@2: % nikcleju@2: % b - Kx1 vector of observations. nikcleju@2: % nikcleju@2: % epsilon - scalar, constraint relaxation parameter nikcleju@2: % nikcleju@2: % lbtol - The log barrier algorithm terminates when the duality gap <= lbtol. nikcleju@2: % Also, the number of log barrier iterations is completely nikcleju@2: % determined by lbtol. nikcleju@2: % Default = 1e-3. nikcleju@2: % nikcleju@2: % mu - Factor by which to increase the barrier constant at each iteration. nikcleju@2: % Default = 10. nikcleju@2: % nikcleju@2: % cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. nikcleju@2: % Default = 1e-8. nikcleju@2: % nikcleju@2: % cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored nikcleju@2: % if A is a matrix. nikcleju@2: % Default = 200. nikcleju@2: % nikcleju@2: % Written by: Justin Romberg, Caltech nikcleju@2: % Email: jrom@acm.caltech.edu nikcleju@2: % Created: October 2005 nikcleju@2: % nikcleju@2: nikcleju@2: function xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter) nikcleju@2: nikcleju@2: largescale = isa(A,'function_handle'); nikcleju@2: nikcleju@2: if (nargin < 6), lbtol = 1e-3; end nikcleju@2: if (nargin < 7), mu = 10; end nikcleju@2: if (nargin < 8), cgtol = 1e-8; end nikcleju@2: if (nargin < 9), cgmaxiter = 200; end nikcleju@2: nikcleju@2: newtontol = lbtol; nikcleju@2: newtonmaxiter = 50; nikcleju@2: nikcleju@2: N = length(x0); nikcleju@2: nikcleju@2: % starting point --- make sure that it is feasible nikcleju@2: if (largescale) nikcleju@2: if (norm(A(x0)-b) > epsilon) nikcleju@2: disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); nikcleju@2: AAt = @(z) A(At(z)); nikcleju@2: w = cgsolve(AAt, b, cgtol, cgmaxiter, 0); nikcleju@2: if (cgres > 1/2) nikcleju@2: disp('A*At is ill-conditioned: cannot find starting point'); nikcleju@2: xp = x0; nikcleju@2: return; nikcleju@2: end nikcleju@2: x0 = At(w); nikcleju@2: end nikcleju@2: else nikcleju@2: if (norm(A*x0-b) > epsilon) nikcleju@2: disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); nikcleju@2: opts.POSDEF = true; opts.SYM = true; nikcleju@2: [w, hcond] = linsolve(A*A', b, opts); nikcleju@2: if (hcond < 1e-14) nikcleju@2: disp('A*At is ill-conditioned: cannot find starting point'); nikcleju@2: xp = x0; nikcleju@2: return; nikcleju@2: end nikcleju@2: x0 = A'*w; nikcleju@2: end nikcleju@2: end nikcleju@2: x = x0; nikcleju@2: u = (0.95)*abs(x0) + (0.10)*max(abs(x0)); nikcleju@2: nikcleju@2: disp(sprintf('Original l1 norm = %.3f, original functional = %.3f', sum(abs(x0)), sum(u))); nikcleju@2: nikcleju@2: % choose initial value of tau so that the duality gap after the first nikcleju@2: % step will be about the origial norm nikcleju@2: tau = max((2*N+1)/sum(abs(x0)), 1); nikcleju@2: nikcleju@2: lbiter = ceil((log(2*N+1)-log(lbtol)-log(tau))/log(mu)); nikcleju@2: disp(sprintf('Number of log barrier iterations = %d\n', lbiter)); nikcleju@2: nikcleju@2: totaliter = 0; nikcleju@2: nikcleju@2: % Added by Nic nikcleju@2: if lbiter == 0 nikcleju@2: xp = zeros(size(x0)); nikcleju@2: end nikcleju@2: nikcleju@2: for ii = 1:lbiter nikcleju@2: nikcleju@2: [xp, up, ntiter] = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter); nikcleju@2: totaliter = totaliter + ntiter; nikcleju@2: nikcleju@2: disp(sprintf('\nLog barrier iter = %d, l1 = %.3f, functional = %8.3f, tau = %8.3e, total newton iter = %d\n', ... nikcleju@2: ii, sum(abs(xp)), sum(up), tau, totaliter)); nikcleju@2: nikcleju@2: x = xp; nikcleju@2: u = up; nikcleju@2: nikcleju@2: tau = mu*tau; nikcleju@2: nikcleju@2: end nikcleju@2: