nikcleju@17
|
1 # -*- coding: utf-8 -*-
|
nikcleju@17
|
2 """
|
nikcleju@17
|
3 Created on Thu Oct 13 14:05:22 2011
|
nikcleju@17
|
4
|
nikcleju@17
|
5 @author: ncleju
|
nikcleju@17
|
6 """
|
nikcleju@17
|
7
|
nikcleju@17
|
8 #from numpy import *
|
nikcleju@17
|
9 #from scipy import *
|
nikcleju@17
|
10 import numpy as np
|
nikcleju@17
|
11 import scipy as sp
|
nikcleju@17
|
12 from scipy import linalg
|
nikcleju@17
|
13 import math
|
nikcleju@17
|
14
|
nikcleju@17
|
15 from numpy.random import RandomState
|
nikcleju@17
|
16 rng = RandomState()
|
nikcleju@17
|
17
|
nikcleju@17
|
18
|
nikcleju@17
|
19
|
nikcleju@17
|
20 def Generate_Analysis_Operator(d, p):
|
nikcleju@17
|
21 # generate random tight frame with equal column norms
|
nikcleju@17
|
22 if p == d:
|
nikcleju@17
|
23 T = rng.randn(d,d);
|
nikcleju@17
|
24 [Omega, discard] = np.qr(T);
|
nikcleju@17
|
25 else:
|
nikcleju@17
|
26 Omega = rng.randn(p, d);
|
nikcleju@17
|
27 T = np.zeros((p, d));
|
nikcleju@17
|
28 tol = 1e-8;
|
nikcleju@17
|
29 max_j = 200;
|
nikcleju@17
|
30 j = 1;
|
nikcleju@17
|
31 while (sum(sum(abs(T-Omega))) > np.dot(tol,np.dot(p,d)) and j < max_j):
|
nikcleju@17
|
32 j = j + 1;
|
nikcleju@17
|
33 T = Omega;
|
nikcleju@17
|
34 [U, S, Vh] = sp.linalg.svd(Omega);
|
nikcleju@17
|
35 V = Vh.T
|
nikcleju@17
|
36 #Omega = U * [eye(d); zeros(p-d,d)] * V';
|
nikcleju@17
|
37 Omega2 = np.dot(np.dot(U, np.concatenate((np.eye(d), np.zeros((p-d,d))))), V.transpose())
|
nikcleju@17
|
38 #Omega = diag(1./sqrt(diag(Omega*Omega')))*Omega;
|
nikcleju@17
|
39 Omega = np.dot(np.diag(1 / np.sqrt(np.diag(np.dot(Omega2,Omega2.transpose())))), Omega2)
|
nikcleju@17
|
40 #end
|
nikcleju@17
|
41 ##disp(j);
|
nikcleju@17
|
42 #end
|
nikcleju@17
|
43 return Omega
|
nikcleju@17
|
44
|
nikcleju@17
|
45
|
nikcleju@17
|
46 def Generate_Data_Known_Omega(Omega, d,p,m,k,noiselevel, numvectors, normstr):
|
nikcleju@17
|
47 #function [x0,y,M,LambdaMat] = Generate_Data_Known_Omega(Omega, d,p,m,k,noiselevel, numvectors, normstr)
|
nikcleju@17
|
48
|
nikcleju@17
|
49 # Building an analysis problem, which includes the ingredients:
|
nikcleju@17
|
50 # - Omega - the analysis operator of size p*d
|
nikcleju@17
|
51 # - M is anunderdetermined measurement matrix of size m*d (m<d)
|
nikcleju@17
|
52 # - x0 is a vector of length d that satisfies ||Omega*x0||=p-k
|
nikcleju@17
|
53 # - Lambda is the true location of these k zeros in Omega*x0
|
nikcleju@17
|
54 # - a measurement vector y0=Mx0 is computed
|
nikcleju@17
|
55 # - noise contaminated measurement vector y is obtained by
|
nikcleju@17
|
56 # y = y0 + n where n is an additive gaussian noise with norm(n,2)/norm(y0,2) = noiselevel
|
nikcleju@17
|
57 # Added by Nic:
|
nikcleju@17
|
58 # - Omega = analysis operator
|
nikcleju@17
|
59 # - normstr: if 'l0', generate l0 sparse vector (unchanged). If 'l1',
|
nikcleju@17
|
60 # generate a vector of Laplacian random variables (gamma) and
|
nikcleju@17
|
61 # pseudoinvert to find x
|
nikcleju@17
|
62
|
nikcleju@17
|
63 # Omega is known as input parameter
|
nikcleju@17
|
64 #Omega=Generate_Analysis_Operator(d, p);
|
nikcleju@17
|
65 # Omega = randn(p,d);
|
nikcleju@17
|
66 # for i = 1:size(Omega,1)
|
nikcleju@17
|
67 # Omega(i,:) = Omega(i,:) / norm(Omega(i,:));
|
nikcleju@17
|
68 # end
|
nikcleju@17
|
69
|
nikcleju@17
|
70 #Init
|
nikcleju@17
|
71 LambdaMat = np.zeros((k,numvectors))
|
nikcleju@17
|
72 x0 = np.zeros((d,numvectors))
|
nikcleju@17
|
73 y = np.zeros((m,numvectors))
|
nikcleju@17
|
74
|
nikcleju@17
|
75 M = rng.randn(m,d);
|
nikcleju@17
|
76
|
nikcleju@17
|
77 #for i=1:numvectors
|
nikcleju@17
|
78 for i in range(0,numvectors):
|
nikcleju@17
|
79
|
nikcleju@17
|
80 # Generate signals
|
nikcleju@17
|
81 #if strcmp(normstr,'l0')
|
nikcleju@17
|
82 if normstr == 'l0':
|
nikcleju@17
|
83 # Unchanged
|
nikcleju@17
|
84
|
nikcleju@17
|
85 #Lambda=randperm(p);
|
nikcleju@17
|
86 Lambda = rng.permutation(int(p));
|
nikcleju@17
|
87 Lambda = np.sort(Lambda[0:k]);
|
nikcleju@17
|
88 LambdaMat[:,i] = Lambda; # store for output
|
nikcleju@17
|
89
|
nikcleju@17
|
90 # The signal is drawn at random from the null-space defined by the rows
|
nikcleju@17
|
91 # of the matreix Omega(Lambda,:)
|
nikcleju@17
|
92 [U,D,Vh] = sp.linalg.svd(Omega[Lambda,:]);
|
nikcleju@17
|
93 V = Vh.T
|
nikcleju@17
|
94 NullSpace = V[:,k:];
|
nikcleju@17
|
95 #print np.dot(NullSpace, rng.randn(d-k,1)).shape
|
nikcleju@17
|
96 #print x0[:,i].shape
|
nikcleju@17
|
97 x0[:,i] = np.squeeze(np.dot(NullSpace, rng.randn(d-k,1)));
|
nikcleju@17
|
98 # Nic: add orthogonality noise
|
nikcleju@17
|
99 # orthonoiseSNRdb = 6;
|
nikcleju@17
|
100 # n = randn(p,1);
|
nikcleju@17
|
101 # #x0(:,i) = x0(:,i) + n / norm(n)^2 * norm(x0(:,i))^2 / 10^(orthonoiseSNRdb/10);
|
nikcleju@17
|
102 # n = n / norm(n)^2 * norm(Omega * x0(:,i))^2 / 10^(orthonoiseSNRdb/10);
|
nikcleju@17
|
103 # x0(:,i) = pinv(Omega) * (Omega * x0(:,i) + n);
|
nikcleju@17
|
104
|
nikcleju@17
|
105 #elseif strcmp(normstr, 'l1')
|
nikcleju@17
|
106 elif normstr == 'l1':
|
nikcleju@17
|
107 print('Nic says: not implemented yet')
|
nikcleju@17
|
108 raise Exception('Nic says: not implemented yet')
|
nikcleju@17
|
109 #gamma = laprnd(p,1,0,1);
|
nikcleju@17
|
110 #x0(:,i) = Omega \ gamma;
|
nikcleju@17
|
111 else:
|
nikcleju@17
|
112 #error('normstr must be l0 or l1!');
|
nikcleju@17
|
113 print('Nic says: not implemented yet')
|
nikcleju@17
|
114 raise Exception('Nic says: not implemented yet')
|
nikcleju@17
|
115 #end
|
nikcleju@17
|
116
|
nikcleju@17
|
117 # Acquire measurements
|
nikcleju@17
|
118 y[:,i] = np.dot(M, x0[:,i])
|
nikcleju@17
|
119
|
nikcleju@17
|
120 # Add noise
|
nikcleju@17
|
121 t_norm = np.linalg.norm(y[:,i],2);
|
nikcleju@17
|
122 n = np.squeeze(rng.randn(m, 1));
|
nikcleju@17
|
123 y[:,i] = y[:,i] + noiselevel * t_norm * n / np.linalg.norm(n, 2);
|
nikcleju@17
|
124 #end
|
nikcleju@17
|
125
|
nikcleju@17
|
126 return x0,y,M,LambdaMat
|
nikcleju@17
|
127
|
nikcleju@17
|
128 #####################
|
nikcleju@17
|
129
|
nikcleju@17
|
130 #function [xhat, arepr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, ilagmult, params)
|
nikcleju@17
|
131 def ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, ilagmult, params):
|
nikcleju@17
|
132
|
nikcleju@17
|
133 #
|
nikcleju@17
|
134 # This function aims to compute
|
nikcleju@17
|
135 # xhat = argmin || Omega(Lambdahat, :) * x ||_2 subject to || y - M*x ||_2 <= epsilon.
|
nikcleju@17
|
136 # arepr is the analysis representation corresponding to Lambdahat, i.e.,
|
nikcleju@17
|
137 # arepr = Omega(Lambdahat, :) * xhat.
|
nikcleju@17
|
138 # The function also returns the lagrange multiplier in the process used to compute xhat.
|
nikcleju@17
|
139 #
|
nikcleju@17
|
140 # Inputs:
|
nikcleju@17
|
141 # y : observation/measurements of an unknown vector x0. It is equal to M*x0 + noise.
|
nikcleju@17
|
142 # M : Measurement matrix
|
nikcleju@17
|
143 # MH : M', the conjugate transpose of M
|
nikcleju@17
|
144 # Omega : analysis operator
|
nikcleju@17
|
145 # OmegaH : Omega', the conjugate transpose of Omega. Also, synthesis operator.
|
nikcleju@17
|
146 # Lambdahat : an index set indicating some rows of Omega.
|
nikcleju@17
|
147 # xinit : initial estimate that will be used for the conjugate gradient algorithm.
|
nikcleju@17
|
148 # ilagmult : initial lagrange multiplier to be used in
|
nikcleju@17
|
149 # params : parameters
|
nikcleju@17
|
150 # params.noise_level : this corresponds to epsilon above.
|
nikcleju@17
|
151 # params.max_inner_iteration : `maximum' number of iterations in conjugate gradient method.
|
nikcleju@17
|
152 # params.l2_accurary : the l2 accuracy parameter used in conjugate gradient method
|
nikcleju@17
|
153 # params.l2solver : if the value is 'pseudoinverse', then direct matrix computation (not conjugate gradient method) is used. Otherwise, conjugate gradient method is used.
|
nikcleju@17
|
154 #
|
nikcleju@17
|
155
|
nikcleju@17
|
156 #d = length(xinit)
|
nikcleju@17
|
157 d = xinit.size
|
nikcleju@17
|
158 lagmultmax = 1e5;
|
nikcleju@17
|
159 lagmultmin = 1e-4;
|
nikcleju@17
|
160 lagmultfactor = 2;
|
nikcleju@17
|
161 accuracy_adjustment_exponent = 4/5;
|
nikcleju@17
|
162 lagmult = max(min(ilagmult, lagmultmax), lagmultmin);
|
nikcleju@17
|
163 was_infeasible = 0;
|
nikcleju@17
|
164 was_feasible = 0;
|
nikcleju@17
|
165
|
nikcleju@17
|
166 #######################################################################
|
nikcleju@17
|
167 ## Computation done using direct matrix computation from matlab. (no conjugate gradient method.)
|
nikcleju@17
|
168 #######################################################################
|
nikcleju@17
|
169 #if strcmp(params.l2solver, 'pseudoinverse')
|
nikcleju@17
|
170 if params['solver'] == 'pseudoinverse':
|
nikcleju@17
|
171 #if strcmp(class(M), 'double') && strcmp(class(Omega), 'double')
|
nikcleju@17
|
172 if M.dtype == 'float64' and Omega.dtype == 'double':
|
nikcleju@17
|
173 while 1:
|
nikcleju@17
|
174 alpha = math.sqrt(lagmult);
|
nikcleju@17
|
175 #xhat = np.concatenate((M, alpha*Omega(Lambdahat,:)]\[y; zeros(length(Lambdahat), 1)];
|
nikcleju@17
|
176 xhat = np.concatenate((M, np.linalg.lstsq(alpha*Omega[Lambdahat,:],np.concatenate((y, np.zeros(Lambdahat.size, 1))))));
|
nikcleju@17
|
177 temp = np.linalg.norm(y - np.dot(M,xhat), 2);
|
nikcleju@17
|
178 #disp(['fidelity error=', num2str(temp), ' lagmult=', num2str(lagmult)]);
|
nikcleju@17
|
179 if temp <= params['noise_level']:
|
nikcleju@17
|
180 was_feasible = 1;
|
nikcleju@17
|
181 if was_infeasible == 1:
|
nikcleju@17
|
182 break;
|
nikcleju@17
|
183 else:
|
nikcleju@17
|
184 lagmult = lagmult*lagmultfactor;
|
nikcleju@17
|
185 elif temp > params['noise_level']:
|
nikcleju@17
|
186 was_infeasible = 1;
|
nikcleju@17
|
187 if was_feasible == 1:
|
nikcleju@17
|
188 xhat = xprev;
|
nikcleju@17
|
189 break;
|
nikcleju@17
|
190 lagmult = lagmult/lagmultfactor;
|
nikcleju@17
|
191 if lagmult < lagmultmin or lagmult > lagmultmax:
|
nikcleju@17
|
192 break;
|
nikcleju@17
|
193 xprev = xhat;
|
nikcleju@17
|
194 arepr = np.dot(Omega[Lambdahat, :], xhat);
|
nikcleju@17
|
195 return xhat,arepr,lagmult;
|
nikcleju@17
|
196
|
nikcleju@17
|
197
|
nikcleju@17
|
198 ########################################################################
|
nikcleju@17
|
199 ## Computation using conjugate gradient method.
|
nikcleju@17
|
200 ########################################################################
|
nikcleju@17
|
201 #if strcmp(class(MH),'function_handle')
|
nikcleju@17
|
202 if hasattr(MH, '__call__'):
|
nikcleju@17
|
203 b = MH(y);
|
nikcleju@17
|
204 else:
|
nikcleju@17
|
205 b = np.dot(MH, y);
|
nikcleju@17
|
206
|
nikcleju@17
|
207 norm_b = np.linalg.norm(b, 2);
|
nikcleju@17
|
208 xhat = xinit;
|
nikcleju@17
|
209 xprev = xinit;
|
nikcleju@17
|
210 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
|
nikcleju@17
|
211 direction = -residual;
|
nikcleju@17
|
212 iter = 0;
|
nikcleju@17
|
213
|
nikcleju@17
|
214 while iter < params.max_inner_iteration:
|
nikcleju@17
|
215 iter = iter + 1;
|
nikcleju@17
|
216 alpha = np.linalg.norm(residual,2)**2 / np.dot(direction.T, TheHermitianMatrix(direction, M, MH, Omega, OmegaH, Lambdahat, lagmult));
|
nikcleju@17
|
217 xhat = xhat + alpha*direction;
|
nikcleju@17
|
218 prev_residual = residual;
|
nikcleju@17
|
219 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
|
nikcleju@17
|
220 beta = np.linalg.norm(residual,2)**2 / np.linalg.norm(prev_residual,2)**2;
|
nikcleju@17
|
221 direction = -residual + beta*direction;
|
nikcleju@17
|
222
|
nikcleju@17
|
223 if np.linalg.norm(residual,2)/norm_b < params['l2_accuracy']*(lagmult**(accuracy_adjustment_exponent)) or iter == params['max_inner_iteration']:
|
nikcleju@17
|
224 #if strcmp(class(M), 'function_handle')
|
nikcleju@17
|
225 if hasattr(M, '__call__'):
|
nikcleju@17
|
226 temp = np.linalg.norm(y-M(xhat), 2);
|
nikcleju@17
|
227 else:
|
nikcleju@17
|
228 temp = np.linalg.norm(y-np.dot(M,xhat), 2);
|
nikcleju@17
|
229
|
nikcleju@17
|
230 #if strcmp(class(Omega), 'function_handle')
|
nikcleju@17
|
231 if hasattr(Omega, '__call__'):
|
nikcleju@17
|
232 u = Omega(xhat);
|
nikcleju@17
|
233 u = math.sqrt(lagmult)*np.linalg.norm(u(Lambdahat), 2);
|
nikcleju@17
|
234 else:
|
nikcleju@17
|
235 u = math.sqrt(lagmult)*np.linalg.norm(Omega[Lambdahat,:]*xhat, 2);
|
nikcleju@17
|
236
|
nikcleju@17
|
237
|
nikcleju@17
|
238 #disp(['residual=', num2str(norm(residual,2)), ' norm_b=', num2str(norm_b), ' omegapart=', num2str(u), ' fidelity error=', num2str(temp), ' lagmult=', num2str(lagmult), ' iter=', num2str(iter)]);
|
nikcleju@17
|
239
|
nikcleju@17
|
240 if temp <= params['noise_level']:
|
nikcleju@17
|
241 was_feasible = 1;
|
nikcleju@17
|
242 if was_infeasible == 1:
|
nikcleju@17
|
243 break;
|
nikcleju@17
|
244 else:
|
nikcleju@17
|
245 lagmult = lagmultfactor*lagmult;
|
nikcleju@17
|
246 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
|
nikcleju@17
|
247 direction = -residual;
|
nikcleju@17
|
248 iter = 0;
|
nikcleju@17
|
249 elif temp > params['noise_level']:
|
nikcleju@17
|
250 lagmult = lagmult/lagmultfactor;
|
nikcleju@17
|
251 if was_feasible == 1:
|
nikcleju@17
|
252 xhat = xprev;
|
nikcleju@17
|
253 break;
|
nikcleju@17
|
254 was_infeasible = 1;
|
nikcleju@17
|
255 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
|
nikcleju@17
|
256 direction = -residual;
|
nikcleju@17
|
257 iter = 0;
|
nikcleju@17
|
258 if lagmult > lagmultmax or lagmult < lagmultmin:
|
nikcleju@17
|
259 break;
|
nikcleju@17
|
260 xprev = xhat;
|
nikcleju@17
|
261 #elseif norm(xprev-xhat)/norm(xhat) < 1e-2
|
nikcleju@17
|
262 # disp(['rel_change=', num2str(norm(xprev-xhat)/norm(xhat))]);
|
nikcleju@17
|
263 # if strcmp(class(M), 'function_handle')
|
nikcleju@17
|
264 # temp = norm(y-M(xhat), 2);
|
nikcleju@17
|
265 # else
|
nikcleju@17
|
266 # temp = norm(y-M*xhat, 2);
|
nikcleju@17
|
267 # end
|
nikcleju@17
|
268 #
|
nikcleju@17
|
269 # if temp > 1.2*params.noise_level
|
nikcleju@17
|
270 # was_infeasible = 1;
|
nikcleju@17
|
271 # lagmult = lagmult/lagmultfactor;
|
nikcleju@17
|
272 # xprev = xhat;
|
nikcleju@17
|
273 # end
|
nikcleju@17
|
274
|
nikcleju@17
|
275 #disp(['fidelity_error=', num2str(temp)]);
|
nikcleju@17
|
276 print 'fidelity_error=',temp
|
nikcleju@17
|
277 #if iter == params['max_inner_iteration']:
|
nikcleju@17
|
278 #disp('max_inner_iteration reached. l2_accuracy not achieved.');
|
nikcleju@17
|
279
|
nikcleju@17
|
280 ##
|
nikcleju@17
|
281 # Compute analysis representation for xhat
|
nikcleju@17
|
282 ##
|
nikcleju@17
|
283 #if strcmp(class(Omega),'function_handle')
|
nikcleju@17
|
284 if hasattr(Omega, '__call__'):
|
nikcleju@17
|
285 temp = Omega(xhat);
|
nikcleju@17
|
286 arepr = temp(Lambdahat);
|
nikcleju@17
|
287 else: ## here Omega is assumed to be a matrix
|
nikcleju@17
|
288 arepr = np.dot(Omega[Lambdahat, :], xhat);
|
nikcleju@17
|
289
|
nikcleju@17
|
290 return xhat,arepr,lagmult
|
nikcleju@17
|
291
|
nikcleju@17
|
292
|
nikcleju@17
|
293 ##
|
nikcleju@17
|
294 # This function computes (M'*M + lm*Omega(L,:)'*Omega(L,:)) * x.
|
nikcleju@17
|
295 ##
|
nikcleju@17
|
296 #function w = TheHermitianMatrix(x, M, MH, Omega, OmegaH, L, lm)
|
nikcleju@17
|
297 def TheHermitianMatrix(x, M, MH, Omega, OmegaH, L, lm):
|
nikcleju@17
|
298 #if strcmp(class(M), 'function_handle')
|
nikcleju@17
|
299 if hasattr(M, '__call__'):
|
nikcleju@17
|
300 w = MH(M(x));
|
nikcleju@17
|
301 else: ## M and MH are matrices
|
nikcleju@17
|
302 w = np.dot(np.dot(MH, M), x);
|
nikcleju@17
|
303
|
nikcleju@17
|
304 if hasattr(Omega, '__call__'):
|
nikcleju@17
|
305 v = Omega(x);
|
nikcleju@17
|
306 vt = np.zeros(v.size);
|
nikcleju@17
|
307 vt[L] = v[L].copy();
|
nikcleju@17
|
308 w = w + lm*OmegaH(vt);
|
nikcleju@17
|
309 else: ## Omega is assumed to be a matrix and OmegaH is its conjugate transpose
|
nikcleju@17
|
310 w = w + lm*np.dot(np.dot(OmegaH[:, L],Omega[L, :]),x);
|
nikcleju@17
|
311
|
nikcleju@17
|
312 return w
|