comparison pyCSalgos/GAP/gap.py @ 17:ef63b89b375a

Started working on GAP, but not complete
author nikcleju
date Sun, 06 Nov 2011 20:58:11 +0000
parents
children a8ff9a881d2f
comparison
equal deleted inserted replaced
16:a6ca929f49f1 17:ef63b89b375a
1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Oct 13 14:05:22 2011
4
5 @author: ncleju
6 """
7
8 #from numpy import *
9 #from scipy import *
10 import numpy as np
11 import scipy as sp
12 from scipy import linalg
13 import math
14
15 from numpy.random import RandomState
16 rng = RandomState()
17
18
19
20 def Generate_Analysis_Operator(d, p):
21 # generate random tight frame with equal column norms
22 if p == d:
23 T = rng.randn(d,d);
24 [Omega, discard] = np.qr(T);
25 else:
26 Omega = rng.randn(p, d);
27 T = np.zeros((p, d));
28 tol = 1e-8;
29 max_j = 200;
30 j = 1;
31 while (sum(sum(abs(T-Omega))) > np.dot(tol,np.dot(p,d)) and j < max_j):
32 j = j + 1;
33 T = Omega;
34 [U, S, Vh] = sp.linalg.svd(Omega);
35 V = Vh.T
36 #Omega = U * [eye(d); zeros(p-d,d)] * V';
37 Omega2 = np.dot(np.dot(U, np.concatenate((np.eye(d), np.zeros((p-d,d))))), V.transpose())
38 #Omega = diag(1./sqrt(diag(Omega*Omega')))*Omega;
39 Omega = np.dot(np.diag(1 / np.sqrt(np.diag(np.dot(Omega2,Omega2.transpose())))), Omega2)
40 #end
41 ##disp(j);
42 #end
43 return Omega
44
45
46 def Generate_Data_Known_Omega(Omega, d,p,m,k,noiselevel, numvectors, normstr):
47 #function [x0,y,M,LambdaMat] = Generate_Data_Known_Omega(Omega, d,p,m,k,noiselevel, numvectors, normstr)
48
49 # Building an analysis problem, which includes the ingredients:
50 # - Omega - the analysis operator of size p*d
51 # - M is anunderdetermined measurement matrix of size m*d (m<d)
52 # - x0 is a vector of length d that satisfies ||Omega*x0||=p-k
53 # - Lambda is the true location of these k zeros in Omega*x0
54 # - a measurement vector y0=Mx0 is computed
55 # - noise contaminated measurement vector y is obtained by
56 # y = y0 + n where n is an additive gaussian noise with norm(n,2)/norm(y0,2) = noiselevel
57 # Added by Nic:
58 # - Omega = analysis operator
59 # - normstr: if 'l0', generate l0 sparse vector (unchanged). If 'l1',
60 # generate a vector of Laplacian random variables (gamma) and
61 # pseudoinvert to find x
62
63 # Omega is known as input parameter
64 #Omega=Generate_Analysis_Operator(d, p);
65 # Omega = randn(p,d);
66 # for i = 1:size(Omega,1)
67 # Omega(i,:) = Omega(i,:) / norm(Omega(i,:));
68 # end
69
70 #Init
71 LambdaMat = np.zeros((k,numvectors))
72 x0 = np.zeros((d,numvectors))
73 y = np.zeros((m,numvectors))
74
75 M = rng.randn(m,d);
76
77 #for i=1:numvectors
78 for i in range(0,numvectors):
79
80 # Generate signals
81 #if strcmp(normstr,'l0')
82 if normstr == 'l0':
83 # Unchanged
84
85 #Lambda=randperm(p);
86 Lambda = rng.permutation(int(p));
87 Lambda = np.sort(Lambda[0:k]);
88 LambdaMat[:,i] = Lambda; # store for output
89
90 # The signal is drawn at random from the null-space defined by the rows
91 # of the matreix Omega(Lambda,:)
92 [U,D,Vh] = sp.linalg.svd(Omega[Lambda,:]);
93 V = Vh.T
94 NullSpace = V[:,k:];
95 #print np.dot(NullSpace, rng.randn(d-k,1)).shape
96 #print x0[:,i].shape
97 x0[:,i] = np.squeeze(np.dot(NullSpace, rng.randn(d-k,1)));
98 # Nic: add orthogonality noise
99 # orthonoiseSNRdb = 6;
100 # n = randn(p,1);
101 # #x0(:,i) = x0(:,i) + n / norm(n)^2 * norm(x0(:,i))^2 / 10^(orthonoiseSNRdb/10);
102 # n = n / norm(n)^2 * norm(Omega * x0(:,i))^2 / 10^(orthonoiseSNRdb/10);
103 # x0(:,i) = pinv(Omega) * (Omega * x0(:,i) + n);
104
105 #elseif strcmp(normstr, 'l1')
106 elif normstr == 'l1':
107 print('Nic says: not implemented yet')
108 raise Exception('Nic says: not implemented yet')
109 #gamma = laprnd(p,1,0,1);
110 #x0(:,i) = Omega \ gamma;
111 else:
112 #error('normstr must be l0 or l1!');
113 print('Nic says: not implemented yet')
114 raise Exception('Nic says: not implemented yet')
115 #end
116
117 # Acquire measurements
118 y[:,i] = np.dot(M, x0[:,i])
119
120 # Add noise
121 t_norm = np.linalg.norm(y[:,i],2);
122 n = np.squeeze(rng.randn(m, 1));
123 y[:,i] = y[:,i] + noiselevel * t_norm * n / np.linalg.norm(n, 2);
124 #end
125
126 return x0,y,M,LambdaMat
127
128 #####################
129
130 #function [xhat, arepr, lagmult] = ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, ilagmult, params)
131 def ArgminOperL2Constrained(y, M, MH, Omega, OmegaH, Lambdahat, xinit, ilagmult, params):
132
133 #
134 # This function aims to compute
135 # xhat = argmin || Omega(Lambdahat, :) * x ||_2 subject to || y - M*x ||_2 <= epsilon.
136 # arepr is the analysis representation corresponding to Lambdahat, i.e.,
137 # arepr = Omega(Lambdahat, :) * xhat.
138 # The function also returns the lagrange multiplier in the process used to compute xhat.
139 #
140 # Inputs:
141 # y : observation/measurements of an unknown vector x0. It is equal to M*x0 + noise.
142 # M : Measurement matrix
143 # MH : M', the conjugate transpose of M
144 # Omega : analysis operator
145 # OmegaH : Omega', the conjugate transpose of Omega. Also, synthesis operator.
146 # Lambdahat : an index set indicating some rows of Omega.
147 # xinit : initial estimate that will be used for the conjugate gradient algorithm.
148 # ilagmult : initial lagrange multiplier to be used in
149 # params : parameters
150 # params.noise_level : this corresponds to epsilon above.
151 # params.max_inner_iteration : `maximum' number of iterations in conjugate gradient method.
152 # params.l2_accurary : the l2 accuracy parameter used in conjugate gradient method
153 # params.l2solver : if the value is 'pseudoinverse', then direct matrix computation (not conjugate gradient method) is used. Otherwise, conjugate gradient method is used.
154 #
155
156 #d = length(xinit)
157 d = xinit.size
158 lagmultmax = 1e5;
159 lagmultmin = 1e-4;
160 lagmultfactor = 2;
161 accuracy_adjustment_exponent = 4/5;
162 lagmult = max(min(ilagmult, lagmultmax), lagmultmin);
163 was_infeasible = 0;
164 was_feasible = 0;
165
166 #######################################################################
167 ## Computation done using direct matrix computation from matlab. (no conjugate gradient method.)
168 #######################################################################
169 #if strcmp(params.l2solver, 'pseudoinverse')
170 if params['solver'] == 'pseudoinverse':
171 #if strcmp(class(M), 'double') && strcmp(class(Omega), 'double')
172 if M.dtype == 'float64' and Omega.dtype == 'double':
173 while 1:
174 alpha = math.sqrt(lagmult);
175 #xhat = np.concatenate((M, alpha*Omega(Lambdahat,:)]\[y; zeros(length(Lambdahat), 1)];
176 xhat = np.concatenate((M, np.linalg.lstsq(alpha*Omega[Lambdahat,:],np.concatenate((y, np.zeros(Lambdahat.size, 1))))));
177 temp = np.linalg.norm(y - np.dot(M,xhat), 2);
178 #disp(['fidelity error=', num2str(temp), ' lagmult=', num2str(lagmult)]);
179 if temp <= params['noise_level']:
180 was_feasible = 1;
181 if was_infeasible == 1:
182 break;
183 else:
184 lagmult = lagmult*lagmultfactor;
185 elif temp > params['noise_level']:
186 was_infeasible = 1;
187 if was_feasible == 1:
188 xhat = xprev;
189 break;
190 lagmult = lagmult/lagmultfactor;
191 if lagmult < lagmultmin or lagmult > lagmultmax:
192 break;
193 xprev = xhat;
194 arepr = np.dot(Omega[Lambdahat, :], xhat);
195 return xhat,arepr,lagmult;
196
197
198 ########################################################################
199 ## Computation using conjugate gradient method.
200 ########################################################################
201 #if strcmp(class(MH),'function_handle')
202 if hasattr(MH, '__call__'):
203 b = MH(y);
204 else:
205 b = np.dot(MH, y);
206
207 norm_b = np.linalg.norm(b, 2);
208 xhat = xinit;
209 xprev = xinit;
210 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
211 direction = -residual;
212 iter = 0;
213
214 while iter < params.max_inner_iteration:
215 iter = iter + 1;
216 alpha = np.linalg.norm(residual,2)**2 / np.dot(direction.T, TheHermitianMatrix(direction, M, MH, Omega, OmegaH, Lambdahat, lagmult));
217 xhat = xhat + alpha*direction;
218 prev_residual = residual;
219 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
220 beta = np.linalg.norm(residual,2)**2 / np.linalg.norm(prev_residual,2)**2;
221 direction = -residual + beta*direction;
222
223 if np.linalg.norm(residual,2)/norm_b < params['l2_accuracy']*(lagmult**(accuracy_adjustment_exponent)) or iter == params['max_inner_iteration']:
224 #if strcmp(class(M), 'function_handle')
225 if hasattr(M, '__call__'):
226 temp = np.linalg.norm(y-M(xhat), 2);
227 else:
228 temp = np.linalg.norm(y-np.dot(M,xhat), 2);
229
230 #if strcmp(class(Omega), 'function_handle')
231 if hasattr(Omega, '__call__'):
232 u = Omega(xhat);
233 u = math.sqrt(lagmult)*np.linalg.norm(u(Lambdahat), 2);
234 else:
235 u = math.sqrt(lagmult)*np.linalg.norm(Omega[Lambdahat,:]*xhat, 2);
236
237
238 #disp(['residual=', num2str(norm(residual,2)), ' norm_b=', num2str(norm_b), ' omegapart=', num2str(u), ' fidelity error=', num2str(temp), ' lagmult=', num2str(lagmult), ' iter=', num2str(iter)]);
239
240 if temp <= params['noise_level']:
241 was_feasible = 1;
242 if was_infeasible == 1:
243 break;
244 else:
245 lagmult = lagmultfactor*lagmult;
246 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
247 direction = -residual;
248 iter = 0;
249 elif temp > params['noise_level']:
250 lagmult = lagmult/lagmultfactor;
251 if was_feasible == 1:
252 xhat = xprev;
253 break;
254 was_infeasible = 1;
255 residual = TheHermitianMatrix(xhat, M, MH, Omega, OmegaH, Lambdahat, lagmult) - b;
256 direction = -residual;
257 iter = 0;
258 if lagmult > lagmultmax or lagmult < lagmultmin:
259 break;
260 xprev = xhat;
261 #elseif norm(xprev-xhat)/norm(xhat) < 1e-2
262 # disp(['rel_change=', num2str(norm(xprev-xhat)/norm(xhat))]);
263 # if strcmp(class(M), 'function_handle')
264 # temp = norm(y-M(xhat), 2);
265 # else
266 # temp = norm(y-M*xhat, 2);
267 # end
268 #
269 # if temp > 1.2*params.noise_level
270 # was_infeasible = 1;
271 # lagmult = lagmult/lagmultfactor;
272 # xprev = xhat;
273 # end
274
275 #disp(['fidelity_error=', num2str(temp)]);
276 print 'fidelity_error=',temp
277 #if iter == params['max_inner_iteration']:
278 #disp('max_inner_iteration reached. l2_accuracy not achieved.');
279
280 ##
281 # Compute analysis representation for xhat
282 ##
283 #if strcmp(class(Omega),'function_handle')
284 if hasattr(Omega, '__call__'):
285 temp = Omega(xhat);
286 arepr = temp(Lambdahat);
287 else: ## here Omega is assumed to be a matrix
288 arepr = np.dot(Omega[Lambdahat, :], xhat);
289
290 return xhat,arepr,lagmult
291
292
293 ##
294 # This function computes (M'*M + lm*Omega(L,:)'*Omega(L,:)) * x.
295 ##
296 #function w = TheHermitianMatrix(x, M, MH, Omega, OmegaH, L, lm)
297 def TheHermitianMatrix(x, M, MH, Omega, OmegaH, L, lm):
298 #if strcmp(class(M), 'function_handle')
299 if hasattr(M, '__call__'):
300 w = MH(M(x));
301 else: ## M and MH are matrices
302 w = np.dot(np.dot(MH, M), x);
303
304 if hasattr(Omega, '__call__'):
305 v = Omega(x);
306 vt = np.zeros(v.size);
307 vt[L] = v[L].copy();
308 w = w + lm*OmegaH(vt);
309 else: ## Omega is assumed to be a matrix and OmegaH is its conjugate transpose
310 w = w + lm*np.dot(np.dot(OmegaH[:, L],Omega[L, :]),x);
311
312 return w