nikcleju@2
|
1
|
nikcleju@2
|
2 import numpy as np
|
nikcleju@2
|
3 import scipy.linalg
|
nikcleju@2
|
4 import math
|
nikcleju@2
|
5
|
nikcleju@2
|
6
|
nikcleju@2
|
7 #function [x, res, iter] = cgsolve(A, b, tol, maxiter, verbose)
|
nikcleju@2
|
8 def cgsolve(A, b, tol, maxiter, verbose=1):
|
nikcleju@2
|
9 # Solve a symmetric positive definite system Ax = b via conjugate gradients.
|
nikcleju@2
|
10 #
|
nikcleju@2
|
11 # Usage: [x, res, iter] = cgsolve(A, b, tol, maxiter, verbose)
|
nikcleju@2
|
12 #
|
nikcleju@2
|
13 # A - Either an NxN matrix, or a function handle.
|
nikcleju@2
|
14 #
|
nikcleju@2
|
15 # b - N vector
|
nikcleju@2
|
16 #
|
nikcleju@2
|
17 # tol - Desired precision. Algorithm terminates when
|
nikcleju@2
|
18 # norm(Ax-b)/norm(b) < tol .
|
nikcleju@2
|
19 #
|
nikcleju@2
|
20 # maxiter - Maximum number of iterations.
|
nikcleju@2
|
21 #
|
nikcleju@2
|
22 # verbose - If 0, do not print out progress messages.
|
nikcleju@2
|
23 # If and integer greater than 0, print out progress every 'verbose' iters.
|
nikcleju@2
|
24 #
|
nikcleju@2
|
25 # Written by: Justin Romberg, Caltech
|
nikcleju@2
|
26 # Email: jrom@acm.caltech.edu
|
nikcleju@2
|
27 # Created: October 2005
|
nikcleju@2
|
28 #
|
nikcleju@2
|
29
|
nikcleju@2
|
30 #---------------------
|
nikcleju@2
|
31 # Original Matab code:
|
nikcleju@2
|
32 #
|
nikcleju@2
|
33 #if (nargin < 5), verbose = 1; end
|
nikcleju@2
|
34 #
|
nikcleju@2
|
35 #implicit = isa(A,'function_handle');
|
nikcleju@2
|
36 #
|
nikcleju@2
|
37 #x = zeros(length(b),1);
|
nikcleju@2
|
38 #r = b;
|
nikcleju@2
|
39 #d = r;
|
nikcleju@2
|
40 #delta = r'*r;
|
nikcleju@2
|
41 #delta0 = b'*b;
|
nikcleju@2
|
42 #numiter = 0;
|
nikcleju@2
|
43 #bestx = x;
|
nikcleju@2
|
44 #bestres = sqrt(delta/delta0);
|
nikcleju@2
|
45 #while ((numiter < maxiter) && (delta > tol^2*delta0))
|
nikcleju@2
|
46 #
|
nikcleju@2
|
47 # # q = A*d
|
nikcleju@2
|
48 # if (implicit), q = A(d); else q = A*d; end
|
nikcleju@2
|
49 #
|
nikcleju@2
|
50 # alpha = delta/(d'*q);
|
nikcleju@2
|
51 # x = x + alpha*d;
|
nikcleju@2
|
52 #
|
nikcleju@2
|
53 # if (mod(numiter+1,50) == 0)
|
nikcleju@2
|
54 # # r = b - Aux*x
|
nikcleju@2
|
55 # if (implicit), r = b - A(x); else r = b - A*x; end
|
nikcleju@2
|
56 # else
|
nikcleju@2
|
57 # r = r - alpha*q;
|
nikcleju@2
|
58 # end
|
nikcleju@2
|
59 #
|
nikcleju@2
|
60 # deltaold = delta;
|
nikcleju@2
|
61 # delta = r'*r;
|
nikcleju@2
|
62 # beta = delta/deltaold;
|
nikcleju@2
|
63 # d = r + beta*d;
|
nikcleju@2
|
64 # numiter = numiter + 1;
|
nikcleju@2
|
65 # if (sqrt(delta/delta0) < bestres)
|
nikcleju@2
|
66 # bestx = x;
|
nikcleju@2
|
67 # bestres = sqrt(delta/delta0);
|
nikcleju@2
|
68 # end
|
nikcleju@2
|
69 #
|
nikcleju@2
|
70 # if ((verbose) && (mod(numiter,verbose)==0))
|
nikcleju@2
|
71 # disp(sprintf('cg: Iter = #d, Best residual = #8.3e, Current residual = #8.3e', ...
|
nikcleju@2
|
72 # numiter, bestres, sqrt(delta/delta0)));
|
nikcleju@2
|
73 # end
|
nikcleju@2
|
74 #
|
nikcleju@2
|
75 #end
|
nikcleju@2
|
76 #
|
nikcleju@2
|
77 #if (verbose)
|
nikcleju@2
|
78 # disp(sprintf('cg: Iterations = #d, best residual = #14.8e', numiter, bestres));
|
nikcleju@2
|
79 #end
|
nikcleju@2
|
80 #x = bestx;
|
nikcleju@2
|
81 #res = bestres;
|
nikcleju@2
|
82 #iter = numiter;
|
nikcleju@2
|
83
|
nikcleju@2
|
84 # End of original Matab code
|
nikcleju@2
|
85 #----------------------------
|
nikcleju@2
|
86
|
nikcleju@2
|
87 #if (nargin < 5), verbose = 1; end
|
nikcleju@2
|
88 # Optional argument
|
nikcleju@2
|
89
|
nikcleju@2
|
90 #implicit = isa(A,'function_handle');
|
nikcleju@2
|
91 if hasattr(A, '__call__'):
|
nikcleju@2
|
92 implicit = True
|
nikcleju@2
|
93 else:
|
nikcleju@2
|
94 implicit = False
|
nikcleju@2
|
95
|
nikcleju@2
|
96 x = np.zeros(b.size)
|
nikcleju@2
|
97 r = b.copy()
|
nikcleju@2
|
98 d = r.copy()
|
nikcleju@2
|
99 delta = np.vdot(r,r)
|
nikcleju@2
|
100 delta0 = np.vdot(b,b)
|
nikcleju@2
|
101 numiter = 0
|
nikcleju@2
|
102 bestx = x.copy()
|
nikcleju@2
|
103 bestres = math.sqrt(delta/delta0)
|
nikcleju@2
|
104 while (numiter < maxiter) and (delta > tol**2*delta0):
|
nikcleju@2
|
105
|
nikcleju@2
|
106 # q = A*d
|
nikcleju@2
|
107 #if (implicit), q = A(d); else q = A*d; end
|
nikcleju@2
|
108 if implicit:
|
nikcleju@2
|
109 q = A(d)
|
nikcleju@2
|
110 else:
|
nikcleju@2
|
111 q = np.dot(A,d)
|
nikcleju@2
|
112
|
nikcleju@2
|
113 alpha = delta/np.vdot(d,q)
|
nikcleju@2
|
114 x = x + alpha*d
|
nikcleju@2
|
115
|
nikcleju@2
|
116 if divmod(numiter+1,50)[1] == 0:
|
nikcleju@2
|
117 # r = b - Aux*x
|
nikcleju@2
|
118 #if (implicit), r = b - A(x); else r = b - A*x; end
|
nikcleju@2
|
119 if implicit:
|
nikcleju@2
|
120 r = b - A(x)
|
nikcleju@2
|
121 else:
|
nikcleju@2
|
122 r = b - np.dot(A,x)
|
nikcleju@2
|
123 else:
|
nikcleju@2
|
124 r = r - alpha*q
|
nikcleju@2
|
125 #end
|
nikcleju@2
|
126
|
nikcleju@2
|
127 deltaold = delta;
|
nikcleju@2
|
128 delta = np.vdot(r,r)
|
nikcleju@2
|
129 beta = delta/deltaold;
|
nikcleju@2
|
130 d = r + beta*d
|
nikcleju@2
|
131 numiter = numiter + 1
|
nikcleju@2
|
132 if (math.sqrt(delta/delta0) < bestres):
|
nikcleju@2
|
133 bestx = x.copy()
|
nikcleju@2
|
134 bestres = math.sqrt(delta/delta0)
|
nikcleju@2
|
135 #end
|
nikcleju@2
|
136
|
nikcleju@2
|
137 if ((verbose) and (divmod(numiter,verbose)[1]==0)):
|
nikcleju@2
|
138 #disp(sprintf('cg: Iter = #d, Best residual = #8.3e, Current residual = #8.3e', ...
|
nikcleju@2
|
139 # numiter, bestres, sqrt(delta/delta0)));
|
nikcleju@2
|
140 print 'cg: Iter = ',numiter,', Best residual = ',bestres,', Current residual = ',math.sqrt(delta/delta0)
|
nikcleju@2
|
141 #end
|
nikcleju@2
|
142
|
nikcleju@2
|
143 #end
|
nikcleju@2
|
144
|
nikcleju@2
|
145 if (verbose):
|
nikcleju@2
|
146 #disp(sprintf('cg: Iterations = #d, best residual = #14.8e', numiter, bestres));
|
nikcleju@2
|
147 print 'cg: Iterations = ',numiter,', best residual = ',bestres
|
nikcleju@2
|
148 #end
|
nikcleju@2
|
149 x = bestx.copy()
|
nikcleju@2
|
150 res = bestres
|
nikcleju@2
|
151 iter = numiter
|
nikcleju@2
|
152
|
nikcleju@2
|
153 return x,res,iter
|
nikcleju@2
|
154
|
nikcleju@2
|
155
|
nikcleju@2
|
156
|
nikcleju@2
|
157 #function [xp, up, niter] = l1qc_newton(x0, u0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter)
|
nikcleju@2
|
158 def l1qc_newton(x0, u0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter):
|
nikcleju@2
|
159 # Newton algorithm for log-barrier subproblems for l1 minimization
|
nikcleju@2
|
160 # with quadratic constraints.
|
nikcleju@2
|
161 #
|
nikcleju@2
|
162 # Usage:
|
nikcleju@2
|
163 # [xp,up,niter] = l1qc_newton(x0, u0, A, At, b, epsilon, tau,
|
nikcleju@2
|
164 # newtontol, newtonmaxiter, cgtol, cgmaxiter)
|
nikcleju@2
|
165 #
|
nikcleju@2
|
166 # x0,u0 - starting points
|
nikcleju@2
|
167 #
|
nikcleju@2
|
168 # A - Either a handle to a function that takes a N vector and returns a K
|
nikcleju@2
|
169 # vector , or a KxN matrix. If A is a function handle, the algorithm
|
nikcleju@2
|
170 # operates in "largescale" mode, solving the Newton systems via the
|
nikcleju@2
|
171 # Conjugate Gradients algorithm.
|
nikcleju@2
|
172 #
|
nikcleju@2
|
173 # At - Handle to a function that takes a K vector and returns an N vector.
|
nikcleju@2
|
174 # If A is a KxN matrix, At is ignored.
|
nikcleju@2
|
175 #
|
nikcleju@2
|
176 # b - Kx1 vector of observations.
|
nikcleju@2
|
177 #
|
nikcleju@2
|
178 # epsilon - scalar, constraint relaxation parameter
|
nikcleju@2
|
179 #
|
nikcleju@2
|
180 # tau - Log barrier parameter.
|
nikcleju@2
|
181 #
|
nikcleju@2
|
182 # newtontol - Terminate when the Newton decrement is <= newtontol.
|
nikcleju@2
|
183 # Default = 1e-3.
|
nikcleju@2
|
184 #
|
nikcleju@2
|
185 # newtonmaxiter - Maximum number of iterations.
|
nikcleju@2
|
186 # Default = 50.
|
nikcleju@2
|
187 #
|
nikcleju@2
|
188 # cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
|
nikcleju@2
|
189 # Default = 1e-8.
|
nikcleju@2
|
190 #
|
nikcleju@2
|
191 # cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
|
nikcleju@2
|
192 # if A is a matrix.
|
nikcleju@2
|
193 # Default = 200.
|
nikcleju@2
|
194 #
|
nikcleju@2
|
195 # Written by: Justin Romberg, Caltech
|
nikcleju@2
|
196 # Email: jrom@acm.caltech.edu
|
nikcleju@2
|
197 # Created: October 2005
|
nikcleju@2
|
198 #
|
nikcleju@2
|
199
|
nikcleju@2
|
200 #---------------------
|
nikcleju@2
|
201 # Original Matab code:
|
nikcleju@2
|
202
|
nikcleju@3
|
203 ## check if the mix A is implicit or explicit
|
nikcleju@2
|
204 #largescale = isa(A,'function_handle');
|
nikcleju@2
|
205 #
|
nikcleju@2
|
206 ## line search parameters
|
nikcleju@2
|
207 #alpha = 0.01;
|
nikcleju@2
|
208 #beta = 0.5;
|
nikcleju@2
|
209 #
|
nikcleju@2
|
210 #if (~largescale), AtA = A'*A; end
|
nikcleju@2
|
211 #
|
nikcleju@2
|
212 ## initial point
|
nikcleju@2
|
213 #x = x0;
|
nikcleju@2
|
214 #u = u0;
|
nikcleju@2
|
215 #if (largescale), r = A(x) - b; else r = A*x - b; end
|
nikcleju@2
|
216 #fu1 = x - u;
|
nikcleju@2
|
217 #fu2 = -x - u;
|
nikcleju@2
|
218 #fe = 1/2*(r'*r - epsilon^2);
|
nikcleju@2
|
219 #f = sum(u) - (1/tau)*(sum(log(-fu1)) + sum(log(-fu2)) + log(-fe));
|
nikcleju@2
|
220 #
|
nikcleju@2
|
221 #niter = 0;
|
nikcleju@2
|
222 #done = 0;
|
nikcleju@2
|
223 #while (~done)
|
nikcleju@2
|
224 #
|
nikcleju@2
|
225 # if (largescale), atr = At(r); else atr = A'*r; end
|
nikcleju@2
|
226 #
|
nikcleju@2
|
227 # ntgz = 1./fu1 - 1./fu2 + 1/fe*atr;
|
nikcleju@2
|
228 # ntgu = -tau - 1./fu1 - 1./fu2;
|
nikcleju@2
|
229 # gradf = -(1/tau)*[ntgz; ntgu];
|
nikcleju@2
|
230 #
|
nikcleju@2
|
231 # sig11 = 1./fu1.^2 + 1./fu2.^2;
|
nikcleju@2
|
232 # sig12 = -1./fu1.^2 + 1./fu2.^2;
|
nikcleju@2
|
233 # sigx = sig11 - sig12.^2./sig11;
|
nikcleju@2
|
234 #
|
nikcleju@2
|
235 # w1p = ntgz - sig12./sig11.*ntgu;
|
nikcleju@2
|
236 # if (largescale)
|
nikcleju@2
|
237 # h11pfun = @(z) sigx.*z - (1/fe)*At(A(z)) + 1/fe^2*(atr'*z)*atr;
|
nikcleju@2
|
238 # [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0);
|
nikcleju@2
|
239 # if (cgres > 1/2)
|
nikcleju@2
|
240 # disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)');
|
nikcleju@2
|
241 # xp = x; up = u;
|
nikcleju@2
|
242 # return
|
nikcleju@2
|
243 # end
|
nikcleju@2
|
244 # Adx = A(dx);
|
nikcleju@2
|
245 # else
|
nikcleju@2
|
246 # H11p = diag(sigx) - (1/fe)*AtA + (1/fe)^2*atr*atr';
|
nikcleju@2
|
247 # opts.POSDEF = true; opts.SYM = true;
|
nikcleju@2
|
248 # [dx,hcond] = linsolve(H11p, w1p, opts);
|
nikcleju@2
|
249 # if (hcond < 1e-14)
|
nikcleju@2
|
250 # disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
|
nikcleju@2
|
251 # xp = x; up = u;
|
nikcleju@2
|
252 # return
|
nikcleju@2
|
253 # end
|
nikcleju@2
|
254 # Adx = A*dx;
|
nikcleju@2
|
255 # end
|
nikcleju@2
|
256 # du = (1./sig11).*ntgu - (sig12./sig11).*dx;
|
nikcleju@2
|
257 #
|
nikcleju@2
|
258 # # minimum step size that stays in the interior
|
nikcleju@2
|
259 # ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0);
|
nikcleju@2
|
260 # aqe = Adx'*Adx; bqe = 2*r'*Adx; cqe = r'*r - epsilon^2;
|
nikcleju@2
|
261 # smax = min(1,min([...
|
nikcleju@2
|
262 # -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ...
|
nikcleju@2
|
263 # (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe)
|
nikcleju@2
|
264 # ]));
|
nikcleju@2
|
265 # s = (0.99)*smax;
|
nikcleju@2
|
266 #
|
nikcleju@2
|
267 # # backtracking line search
|
nikcleju@2
|
268 # suffdec = 0;
|
nikcleju@2
|
269 # backiter = 0;
|
nikcleju@2
|
270 # while (~suffdec)
|
nikcleju@2
|
271 # xp = x + s*dx; up = u + s*du; rp = r + s*Adx;
|
nikcleju@2
|
272 # fu1p = xp - up; fu2p = -xp - up; fep = 1/2*(rp'*rp - epsilon^2);
|
nikcleju@2
|
273 # fp = sum(up) - (1/tau)*(sum(log(-fu1p)) + sum(log(-fu2p)) + log(-fep));
|
nikcleju@2
|
274 # flin = f + alpha*s*(gradf'*[dx; du]);
|
nikcleju@2
|
275 # suffdec = (fp <= flin);
|
nikcleju@2
|
276 # s = beta*s;
|
nikcleju@2
|
277 # backiter = backiter + 1;
|
nikcleju@2
|
278 # if (backiter > 32)
|
nikcleju@2
|
279 # disp('Stuck on backtracking line search, returning previous iterate. (See Section 4 of notes for more information.)');
|
nikcleju@2
|
280 # xp = x; up = u;
|
nikcleju@2
|
281 # return
|
nikcleju@2
|
282 # end
|
nikcleju@2
|
283 # end
|
nikcleju@2
|
284 #
|
nikcleju@2
|
285 # # set up for next iteration
|
nikcleju@2
|
286 # x = xp; u = up; r = rp;
|
nikcleju@2
|
287 # fu1 = fu1p; fu2 = fu2p; fe = fep; f = fp;
|
nikcleju@2
|
288 #
|
nikcleju@2
|
289 # lambda2 = -(gradf'*[dx; du]);
|
nikcleju@2
|
290 # stepsize = s*norm([dx; du]);
|
nikcleju@2
|
291 # niter = niter + 1;
|
nikcleju@2
|
292 # done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);
|
nikcleju@2
|
293 #
|
nikcleju@2
|
294 # disp(sprintf('Newton iter = #d, Functional = #8.3f, Newton decrement = #8.3f, Stepsize = #8.3e', ...
|
nikcleju@2
|
295 # niter, f, lambda2/2, stepsize));
|
nikcleju@2
|
296 # if (largescale)
|
nikcleju@2
|
297 # disp(sprintf(' CG Res = #8.3e, CG Iter = #d', cgres, cgiter));
|
nikcleju@2
|
298 # else
|
nikcleju@2
|
299 # disp(sprintf(' H11p condition number = #8.3e', hcond));
|
nikcleju@2
|
300 # end
|
nikcleju@2
|
301 #
|
nikcleju@2
|
302 #end
|
nikcleju@2
|
303
|
nikcleju@2
|
304 # End of original Matab code
|
nikcleju@2
|
305 #----------------------------
|
nikcleju@2
|
306
|
nikcleju@2
|
307 # check if the matrix A is implicit or explicit
|
nikcleju@2
|
308 #largescale = isa(A,'function_handle');
|
nikcleju@2
|
309 if hasattr(A, '__call__'):
|
nikcleju@2
|
310 largescale = True
|
nikcleju@2
|
311 else:
|
nikcleju@2
|
312 largescale = False
|
nikcleju@2
|
313
|
nikcleju@2
|
314 # line search parameters
|
nikcleju@2
|
315 alpha = 0.01
|
nikcleju@2
|
316 beta = 0.5
|
nikcleju@2
|
317
|
nikcleju@2
|
318 #if (~largescale), AtA = A'*A; end
|
nikcleju@2
|
319 if not largescale:
|
nikcleju@2
|
320 AtA = np.dot(A.T,A)
|
nikcleju@2
|
321
|
nikcleju@2
|
322 # initial point
|
nikcleju@2
|
323 x = x0.copy()
|
nikcleju@2
|
324 u = u0.copy()
|
nikcleju@2
|
325 #if (largescale), r = A(x) - b; else r = A*x - b; end
|
nikcleju@2
|
326 if largescale:
|
nikcleju@2
|
327 r = A(x) - b
|
nikcleju@2
|
328 else:
|
nikcleju@2
|
329 r = np.dot(A,x) - b
|
nikcleju@2
|
330
|
nikcleju@2
|
331 fu1 = x - u
|
nikcleju@2
|
332 fu2 = -x - u
|
nikcleju@3
|
333 fe = 1.0/2*(np.vdot(r,r) - epsilon**2)
|
nikcleju@3
|
334 f = u.sum() - (1.0/tau)*(np.log(-fu1).sum() + np.log(-fu2).sum() + math.log(-fe))
|
nikcleju@2
|
335
|
nikcleju@2
|
336 niter = 0
|
nikcleju@2
|
337 done = 0
|
nikcleju@2
|
338 while not done:
|
nikcleju@2
|
339
|
nikcleju@2
|
340 #if (largescale), atr = At(r); else atr = A'*r; end
|
nikcleju@2
|
341 if largescale:
|
nikcleju@2
|
342 atr = At(r)
|
nikcleju@2
|
343 else:
|
nikcleju@2
|
344 atr = np.dot(A.T,r)
|
nikcleju@2
|
345
|
nikcleju@2
|
346 #ntgz = 1./fu1 - 1./fu2 + 1/fe*atr;
|
nikcleju@2
|
347 ntgz = 1.0/fu1 - 1.0/fu2 + 1.0/fe*atr
|
nikcleju@2
|
348 #ntgu = -tau - 1./fu1 - 1./fu2;
|
nikcleju@2
|
349 ntgu = -tau - 1.0/fu1 - 1.0/fu2
|
nikcleju@2
|
350 #gradf = -(1/tau)*[ntgz; ntgu];
|
nikcleju@2
|
351 gradf = -(1.0/tau)*np.concatenate((ntgz, ntgu),0)
|
nikcleju@2
|
352
|
nikcleju@2
|
353 #sig11 = 1./fu1.^2 + 1./fu2.^2;
|
nikcleju@2
|
354 sig11 = 1.0/(fu1**2) + 1.0/(fu2**2)
|
nikcleju@2
|
355 #sig12 = -1./fu1.^2 + 1./fu2.^2;
|
nikcleju@2
|
356 sig12 = -1.0/(fu1**2) + 1.0/(fu2**2)
|
nikcleju@2
|
357 #sigx = sig11 - sig12.^2./sig11;
|
nikcleju@2
|
358 sigx = sig11 - (sig12**2)/sig11
|
nikcleju@2
|
359
|
nikcleju@2
|
360 #w1p = ntgz - sig12./sig11.*ntgu;
|
nikcleju@2
|
361 w1p = ntgz - sig12/sig11*ntgu
|
nikcleju@2
|
362 if largescale:
|
nikcleju@2
|
363 #h11pfun = @(z) sigx.*z - (1/fe)*At(A(z)) + 1/fe^2*(atr'*z)*atr;
|
nikcleju@2
|
364 h11pfun = lambda z: sigx*z - (1.0/fe)*At(A(z)) + 1.0/(fe**2)*np.dot(np.dot(atr.T,z),atr)
|
nikcleju@2
|
365 dx,cgres,cgiter = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0)
|
nikcleju@3
|
366 if (cgres > 1.0/2):
|
nikcleju@2
|
367 print 'Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'
|
nikcleju@2
|
368 xp = x.copy()
|
nikcleju@2
|
369 up = u.copy()
|
nikcleju@2
|
370 return xp,up,niter
|
nikcleju@2
|
371 #end
|
nikcleju@2
|
372 Adx = A(dx)
|
nikcleju@2
|
373 else:
|
nikcleju@2
|
374 #H11p = diag(sigx) - (1/fe)*AtA + (1/fe)^2*atr*atr';
|
nikcleju@3
|
375 # Attention: atr is column vector, so atr*atr' means outer(atr,atr)
|
nikcleju@3
|
376 H11p = np.diag(sigx) - (1.0/fe)*AtA + (1.0/fe)**2*np.outer(atr,atr)
|
nikcleju@2
|
377 #opts.POSDEF = true; opts.SYM = true;
|
nikcleju@2
|
378 #[dx,hcond] = linsolve(H11p, w1p, opts);
|
nikcleju@2
|
379 #if (hcond < 1e-14)
|
nikcleju@2
|
380 # disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)');
|
nikcleju@2
|
381 # xp = x; up = u;
|
nikcleju@2
|
382 # return
|
nikcleju@2
|
383 #end
|
nikcleju@2
|
384 try:
|
nikcleju@2
|
385 dx = scipy.linalg.solve(H11p, w1p, sym_pos=True)
|
nikcleju@3
|
386 #dx = np.linalg.solve(H11p, w1p)
|
nikcleju@3
|
387 hcond = 1.0/np.linalg.cond(H11p)
|
nikcleju@2
|
388 except scipy.linalg.LinAlgError:
|
nikcleju@2
|
389 print 'Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'
|
nikcleju@2
|
390 xp = x.copy()
|
nikcleju@2
|
391 up = u.copy()
|
nikcleju@2
|
392 return xp,up,niter
|
nikcleju@2
|
393 if hcond < 1e-14:
|
nikcleju@2
|
394 print 'Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'
|
nikcleju@2
|
395 xp = x.copy()
|
nikcleju@2
|
396 up = u.copy()
|
nikcleju@2
|
397 return xp,up,niter
|
nikcleju@2
|
398
|
nikcleju@2
|
399 #Adx = A*dx;
|
nikcleju@2
|
400 Adx = np.dot(A,dx)
|
nikcleju@2
|
401 #end
|
nikcleju@2
|
402 #du = (1./sig11).*ntgu - (sig12./sig11).*dx;
|
nikcleju@2
|
403 du = (1.0/sig11)*ntgu - (sig12/sig11)*dx;
|
nikcleju@2
|
404
|
nikcleju@2
|
405 # minimum step size that stays in the interior
|
nikcleju@2
|
406 #ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0);
|
nikcleju@2
|
407 ifu1 = np.nonzero((dx-du)>0)
|
nikcleju@2
|
408 ifu2 = np.nonzero((-dx-du)>0)
|
nikcleju@2
|
409 #aqe = Adx'*Adx; bqe = 2*r'*Adx; cqe = r'*r - epsilon^2;
|
nikcleju@2
|
410 aqe = np.dot(Adx.T,Adx)
|
nikcleju@2
|
411 bqe = 2*np.dot(r.T,Adx)
|
nikcleju@2
|
412 cqe = np.vdot(r,r) - epsilon**2
|
nikcleju@2
|
413 #smax = min(1,min([...
|
nikcleju@2
|
414 # -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ...
|
nikcleju@2
|
415 # (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe)
|
nikcleju@2
|
416 # ]));
|
nikcleju@3
|
417 smax = min(1,np.concatenate( (-fu1[ifu1]/(dx[ifu1]-du[ifu1]) , -fu2[ifu2]/(-dx[ifu2]-du[ifu2]) , np.array([ (-bqe + math.sqrt(bqe**2-4*aqe*cqe))/(2*aqe) ]) ) , 0).min())
|
nikcleju@3
|
418
|
nikcleju@3
|
419 s = 0.99 * smax
|
nikcleju@2
|
420
|
nikcleju@2
|
421 # backtracking line search
|
nikcleju@2
|
422 suffdec = 0
|
nikcleju@2
|
423 backiter = 0
|
nikcleju@2
|
424 while not suffdec:
|
nikcleju@2
|
425 #xp = x + s*dx; up = u + s*du; rp = r + s*Adx;
|
nikcleju@2
|
426 xp = x + s*dx
|
nikcleju@2
|
427 up = u + s*du
|
nikcleju@2
|
428 rp = r + s*Adx
|
nikcleju@2
|
429 #fu1p = xp - up; fu2p = -xp - up; fep = 1/2*(rp'*rp - epsilon^2);
|
nikcleju@2
|
430 fu1p = xp - up
|
nikcleju@2
|
431 fu2p = -xp - up
|
nikcleju@3
|
432 fep = 0.5*(np.vdot(rp,rp) - epsilon**2)
|
nikcleju@2
|
433 #fp = sum(up) - (1/tau)*(sum(log(-fu1p)) + sum(log(-fu2p)) + log(-fep));
|
nikcleju@3
|
434 fp = up.sum() - (1.0/tau)*(np.log(-fu1p).sum() + np.log(-fu2p).sum() + math.log(-fep))
|
nikcleju@2
|
435 #flin = f + alpha*s*(gradf'*[dx; du]);
|
nikcleju@2
|
436 flin = f + alpha*s*np.dot(gradf.T , np.concatenate((dx,du),0))
|
nikcleju@2
|
437 #suffdec = (fp <= flin);
|
nikcleju@2
|
438 if fp <= flin:
|
nikcleju@2
|
439 suffdec = True
|
nikcleju@2
|
440 else:
|
nikcleju@2
|
441 suffdec = False
|
nikcleju@2
|
442
|
nikcleju@2
|
443 s = beta*s
|
nikcleju@2
|
444 backiter = backiter + 1
|
nikcleju@2
|
445 if (backiter > 32):
|
nikcleju@2
|
446 print 'Stuck on backtracking line search, returning previous iterate. (See Section 4 of notes for more information.)'
|
nikcleju@2
|
447 xp = x.copy()
|
nikcleju@2
|
448 up = u.copy()
|
nikcleju@2
|
449 return xp,up,niter
|
nikcleju@2
|
450 #end
|
nikcleju@2
|
451 #end
|
nikcleju@2
|
452
|
nikcleju@2
|
453 # set up for next iteration
|
nikcleju@2
|
454 #x = xp; u = up; r = rp;
|
nikcleju@2
|
455 x = xp.copy()
|
nikcleju@2
|
456 u = up.copy()
|
nikcleju@2
|
457 r = rp.copy()
|
nikcleju@2
|
458 #fu1 = fu1p; fu2 = fu2p; fe = fep; f = fp;
|
nikcleju@2
|
459 fu1 = fu1p.copy()
|
nikcleju@2
|
460 fu2 = fu2p.copy()
|
nikcleju@2
|
461 fe = fep
|
nikcleju@2
|
462 f = fp
|
nikcleju@2
|
463
|
nikcleju@2
|
464 #lambda2 = -(gradf'*[dx; du]);
|
nikcleju@3
|
465 lambda2 = -np.dot(gradf.T , np.concatenate((dx,du),0))
|
nikcleju@2
|
466 #stepsize = s*norm([dx; du]);
|
nikcleju@2
|
467 stepsize = s * np.linalg.norm(np.concatenate((dx,du),0))
|
nikcleju@2
|
468 niter = niter + 1
|
nikcleju@2
|
469 #done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);
|
nikcleju@2
|
470 if lambda2/2.0 < newtontol or niter >= newtonmaxiter:
|
nikcleju@2
|
471 done = 1
|
nikcleju@2
|
472 else:
|
nikcleju@2
|
473 done = 0
|
nikcleju@2
|
474
|
nikcleju@2
|
475 #disp(sprintf('Newton iter = #d, Functional = #8.3f, Newton decrement = #8.3f, Stepsize = #8.3e', ...
|
nikcleju@2
|
476 print 'Newton iter = ',niter,', Functional = ',f,', Newton decrement = ',lambda2/2.0,', Stepsize = ',stepsize
|
nikcleju@2
|
477
|
nikcleju@2
|
478 if largescale:
|
nikcleju@2
|
479 print ' CG Res = ',cgres,', CG Iter = ',cgiter
|
nikcleju@2
|
480 else:
|
nikcleju@2
|
481 print ' H11p condition number = ',hcond
|
nikcleju@2
|
482 #end
|
nikcleju@2
|
483
|
nikcleju@2
|
484 #end
|
nikcleju@2
|
485 return xp,up,niter
|
nikcleju@2
|
486
|
nikcleju@2
|
487 #function xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
|
nikcleju@2
|
488 def l1qc_logbarrier(x0, A, At, b, epsilon, lbtol=1e-3, mu=10, cgtol=1e-8, cgmaxiter=200):
|
nikcleju@2
|
489 # Solve quadratically constrained l1 minimization:
|
nikcleju@2
|
490 # min ||x||_1 s.t. ||Ax - b||_2 <= \epsilon
|
nikcleju@2
|
491 #
|
nikcleju@2
|
492 # Reformulate as the second-order cone program
|
nikcleju@2
|
493 # min_{x,u} sum(u) s.t. x - u <= 0,
|
nikcleju@2
|
494 # -x - u <= 0,
|
nikcleju@2
|
495 # 1/2(||Ax-b||^2 - \epsilon^2) <= 0
|
nikcleju@2
|
496 # and use a log barrier algorithm.
|
nikcleju@2
|
497 #
|
nikcleju@2
|
498 # Usage: xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
|
nikcleju@2
|
499 #
|
nikcleju@2
|
500 # x0 - Nx1 vector, initial point.
|
nikcleju@2
|
501 #
|
nikcleju@2
|
502 # A - Either a handle to a function that takes a N vector and returns a K
|
nikcleju@2
|
503 # vector , or a KxN matrix. If A is a function handle, the algorithm
|
nikcleju@2
|
504 # operates in "largescale" mode, solving the Newton systems via the
|
nikcleju@2
|
505 # Conjugate Gradients algorithm.
|
nikcleju@2
|
506 #
|
nikcleju@2
|
507 # At - Handle to a function that takes a K vector and returns an N vector.
|
nikcleju@2
|
508 # If A is a KxN matrix, At is ignored.
|
nikcleju@2
|
509 #
|
nikcleju@2
|
510 # b - Kx1 vector of observations.
|
nikcleju@2
|
511 #
|
nikcleju@2
|
512 # epsilon - scalar, constraint relaxation parameter
|
nikcleju@2
|
513 #
|
nikcleju@2
|
514 # lbtol - The log barrier algorithm terminates when the duality gap <= lbtol.
|
nikcleju@2
|
515 # Also, the number of log barrier iterations is completely
|
nikcleju@2
|
516 # determined by lbtol.
|
nikcleju@2
|
517 # Default = 1e-3.
|
nikcleju@2
|
518 #
|
nikcleju@2
|
519 # mu - Factor by which to increase the barrier constant at each iteration.
|
nikcleju@2
|
520 # Default = 10.
|
nikcleju@2
|
521 #
|
nikcleju@2
|
522 # cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
|
nikcleju@2
|
523 # Default = 1e-8.
|
nikcleju@2
|
524 #
|
nikcleju@2
|
525 # cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
|
nikcleju@2
|
526 # if A is a matrix.
|
nikcleju@2
|
527 # Default = 200.
|
nikcleju@2
|
528 #
|
nikcleju@2
|
529 # Written by: Justin Romberg, Caltech
|
nikcleju@2
|
530 # Email: jrom@acm.caltech.edu
|
nikcleju@2
|
531 # Created: October 2005
|
nikcleju@2
|
532 #
|
nikcleju@2
|
533
|
nikcleju@2
|
534 #---------------------
|
nikcleju@2
|
535 # Original Matab code:
|
nikcleju@2
|
536
|
nikcleju@2
|
537 #largescale = isa(A,'function_handle');
|
nikcleju@2
|
538 #
|
nikcleju@2
|
539 #if (nargin < 6), lbtol = 1e-3; end
|
nikcleju@2
|
540 #if (nargin < 7), mu = 10; end
|
nikcleju@2
|
541 #if (nargin < 8), cgtol = 1e-8; end
|
nikcleju@2
|
542 #if (nargin < 9), cgmaxiter = 200; end
|
nikcleju@2
|
543 #
|
nikcleju@2
|
544 #newtontol = lbtol;
|
nikcleju@2
|
545 #newtonmaxiter = 50;
|
nikcleju@2
|
546 #
|
nikcleju@2
|
547 #N = length(x0);
|
nikcleju@2
|
548 #
|
nikcleju@2
|
549 ## starting point --- make sure that it is feasible
|
nikcleju@2
|
550 #if (largescale)
|
nikcleju@2
|
551 # if (norm(A(x0)-b) > epsilon)
|
nikcleju@2
|
552 # disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
|
nikcleju@2
|
553 # AAt = @(z) A(At(z));
|
nikcleju@2
|
554 # w = cgsolve(AAt, b, cgtol, cgmaxiter, 0);
|
nikcleju@2
|
555 # if (cgres > 1/2)
|
nikcleju@2
|
556 # disp('A*At is ill-conditioned: cannot find starting point');
|
nikcleju@2
|
557 # xp = x0;
|
nikcleju@2
|
558 # return;
|
nikcleju@2
|
559 # end
|
nikcleju@2
|
560 # x0 = At(w);
|
nikcleju@2
|
561 # end
|
nikcleju@2
|
562 #else
|
nikcleju@2
|
563 # if (norm(A*x0-b) > epsilon)
|
nikcleju@2
|
564 # disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
|
nikcleju@2
|
565 # opts.POSDEF = true; opts.SYM = true;
|
nikcleju@2
|
566 # [w, hcond] = linsolve(A*A', b, opts);
|
nikcleju@2
|
567 # if (hcond < 1e-14)
|
nikcleju@2
|
568 # disp('A*At is ill-conditioned: cannot find starting point');
|
nikcleju@2
|
569 # xp = x0;
|
nikcleju@2
|
570 # return;
|
nikcleju@2
|
571 # end
|
nikcleju@2
|
572 # x0 = A'*w;
|
nikcleju@2
|
573 # end
|
nikcleju@2
|
574 #end
|
nikcleju@2
|
575 #x = x0;
|
nikcleju@2
|
576 #u = (0.95)*abs(x0) + (0.10)*max(abs(x0));
|
nikcleju@2
|
577 #
|
nikcleju@2
|
578 #disp(sprintf('Original l1 norm = #.3f, original functional = #.3f', sum(abs(x0)), sum(u)));
|
nikcleju@2
|
579 #
|
nikcleju@2
|
580 ## choose initial value of tau so that the duality gap after the first
|
nikcleju@2
|
581 ## step will be about the origial norm
|
nikcleju@2
|
582 #tau = max((2*N+1)/sum(abs(x0)), 1);
|
nikcleju@2
|
583 #
|
nikcleju@2
|
584 #lbiter = ceil((log(2*N+1)-log(lbtol)-log(tau))/log(mu));
|
nikcleju@2
|
585 #disp(sprintf('Number of log barrier iterations = #d\n', lbiter));
|
nikcleju@2
|
586 #
|
nikcleju@2
|
587 #totaliter = 0;
|
nikcleju@2
|
588 #
|
nikcleju@2
|
589 ## Added by Nic
|
nikcleju@2
|
590 #if lbiter == 0
|
nikcleju@2
|
591 # xp = zeros(size(x0));
|
nikcleju@2
|
592 #end
|
nikcleju@2
|
593 #
|
nikcleju@2
|
594 #for ii = 1:lbiter
|
nikcleju@2
|
595 #
|
nikcleju@2
|
596 # [xp, up, ntiter] = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter);
|
nikcleju@2
|
597 # totaliter = totaliter + ntiter;
|
nikcleju@2
|
598 #
|
nikcleju@2
|
599 # disp(sprintf('\nLog barrier iter = #d, l1 = #.3f, functional = #8.3f, tau = #8.3e, total newton iter = #d\n', ...
|
nikcleju@2
|
600 # ii, sum(abs(xp)), sum(up), tau, totaliter));
|
nikcleju@2
|
601 #
|
nikcleju@2
|
602 # x = xp;
|
nikcleju@2
|
603 # u = up;
|
nikcleju@2
|
604 #
|
nikcleju@2
|
605 # tau = mu*tau;
|
nikcleju@2
|
606 #
|
nikcleju@2
|
607 #end
|
nikcleju@2
|
608 #
|
nikcleju@2
|
609 # End of original Matab code
|
nikcleju@2
|
610 #----------------------------
|
nikcleju@2
|
611
|
nikcleju@2
|
612 #largescale = isa(A,'function_handle');
|
nikcleju@2
|
613 if hasattr(A, '__call__'):
|
nikcleju@2
|
614 largescale = True
|
nikcleju@2
|
615 else:
|
nikcleju@2
|
616 largescale = False
|
nikcleju@2
|
617
|
nikcleju@2
|
618 # if (nargin < 6), lbtol = 1e-3; end
|
nikcleju@2
|
619 # if (nargin < 7), mu = 10; end
|
nikcleju@2
|
620 # if (nargin < 8), cgtol = 1e-8; end
|
nikcleju@2
|
621 # if (nargin < 9), cgmaxiter = 200; end
|
nikcleju@2
|
622 # Nic: added them as optional parameteres
|
nikcleju@2
|
623
|
nikcleju@2
|
624 newtontol = lbtol
|
nikcleju@2
|
625 newtonmaxiter = 50
|
nikcleju@2
|
626
|
nikcleju@2
|
627 #N = length(x0);
|
nikcleju@3
|
628 N = x0.size
|
nikcleju@2
|
629
|
nikcleju@2
|
630 # starting point --- make sure that it is feasible
|
nikcleju@2
|
631 if largescale:
|
nikcleju@2
|
632 if np.linalg.norm(A(x0) - b) > epsilon:
|
nikcleju@2
|
633 print 'Starting point infeasible; using x0 = At*inv(AAt)*y.'
|
nikcleju@2
|
634 #AAt = @(z) A(At(z));
|
nikcleju@2
|
635 AAt = lambda z: A(At(z))
|
nikcleju@2
|
636 # TODO: implement cgsolve
|
nikcleju@2
|
637 w,cgres,cgiter = cgsolve(AAt, b, cgtol, cgmaxiter, 0)
|
nikcleju@3
|
638 if (cgres > 1.0/2):
|
nikcleju@2
|
639 print 'A*At is ill-conditioned: cannot find starting point'
|
nikcleju@2
|
640 xp = x0.copy()
|
nikcleju@2
|
641 return xp
|
nikcleju@2
|
642 #end
|
nikcleju@2
|
643 x0 = At(w)
|
nikcleju@2
|
644 #end
|
nikcleju@2
|
645 else:
|
nikcleju@2
|
646 if np.linalg.norm( np.dot(A,x0) - b ) > epsilon:
|
nikcleju@2
|
647 print 'Starting point infeasible; using x0 = At*inv(AAt)*y.'
|
nikcleju@2
|
648 #opts.POSDEF = true; opts.SYM = true;
|
nikcleju@2
|
649 #[w, hcond] = linsolve(A*A', b, opts);
|
nikcleju@2
|
650 #if (hcond < 1e-14)
|
nikcleju@2
|
651 # disp('A*At is ill-conditioned: cannot find starting point');
|
nikcleju@2
|
652 # xp = x0;
|
nikcleju@2
|
653 # return;
|
nikcleju@2
|
654 #end
|
nikcleju@2
|
655 try:
|
nikcleju@2
|
656 w = scipy.linalg.solve(np.dot(A,A.T), b, sym_pos=True)
|
nikcleju@3
|
657 #w = np.linalg.solve(np.dot(A,A.T), b)
|
nikcleju@2
|
658 hcond = 1.0/scipy.linalg.cond(np.dot(A,A.T))
|
nikcleju@2
|
659 except scipy.linalg.LinAlgError:
|
nikcleju@2
|
660 print 'A*At is ill-conditioned: cannot find starting point'
|
nikcleju@2
|
661 xp = x0.copy()
|
nikcleju@2
|
662 return xp
|
nikcleju@2
|
663 if hcond < 1e-14:
|
nikcleju@2
|
664 print 'A*At is ill-conditioned: cannot find starting point'
|
nikcleju@2
|
665 xp = x0.copy()
|
nikcleju@2
|
666 return xp
|
nikcleju@2
|
667 #x0 = A'*w;
|
nikcleju@2
|
668 x0 = np.dot(A.T, w)
|
nikcleju@2
|
669 #end
|
nikcleju@2
|
670 #end
|
nikcleju@2
|
671 x = x0.copy()
|
nikcleju@2
|
672 u = (0.95)*np.abs(x0) + (0.10)*np.abs(x0).max()
|
nikcleju@2
|
673
|
nikcleju@2
|
674 #disp(sprintf('Original l1 norm = #.3f, original functional = #.3f', sum(abs(x0)), sum(u)));
|
nikcleju@2
|
675 print 'Original l1 norm = ',np.abs(x0).sum(),'original functional = ',u.sum()
|
nikcleju@2
|
676
|
nikcleju@2
|
677 # choose initial value of tau so that the duality gap after the first
|
nikcleju@2
|
678 # step will be about the origial norm
|
nikcleju@3
|
679 tau = max(((2*N+1.0)/np.abs(x0).sum()), 1)
|
nikcleju@2
|
680
|
nikcleju@2
|
681 lbiter = math.ceil((math.log(2*N+1)-math.log(lbtol)-math.log(tau))/math.log(mu))
|
nikcleju@2
|
682 #disp(sprintf('Number of log barrier iterations = #d\n', lbiter));
|
nikcleju@2
|
683 print 'Number of log barrier iterations = ',lbiter
|
nikcleju@2
|
684
|
nikcleju@2
|
685 totaliter = 0
|
nikcleju@2
|
686
|
nikcleju@2
|
687 # Added by Nic, to fix some crashing
|
nikcleju@2
|
688 if lbiter == 0:
|
nikcleju@2
|
689 xp = np.zeros(x0.size)
|
nikcleju@2
|
690 #end
|
nikcleju@2
|
691
|
nikcleju@2
|
692 #for ii = 1:lbiter
|
nikcleju@2
|
693 for ii in np.arange(lbiter):
|
nikcleju@2
|
694
|
nikcleju@2
|
695 xp,up,ntiter = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter)
|
nikcleju@2
|
696 totaliter = totaliter + ntiter
|
nikcleju@2
|
697
|
nikcleju@2
|
698 #disp(sprintf('\nLog barrier iter = #d, l1 = #.3f, functional = #8.3f, tau = #8.3e, total newton iter = #d\n', ...
|
nikcleju@2
|
699 # ii, sum(abs(xp)), sum(up), tau, totaliter));
|
nikcleju@2
|
700 print 'Log barrier iter = ',ii,', l1 = ',np.abs(xp).sum(),', functional = ',up.sum(),', tau = ',tau,', total newton iter = ',totaliter
|
nikcleju@2
|
701 x = xp.copy()
|
nikcleju@2
|
702 u = up.copy()
|
nikcleju@2
|
703
|
nikcleju@2
|
704 tau = mu*tau
|
nikcleju@2
|
705
|
nikcleju@2
|
706 #end
|
nikcleju@2
|
707 return xp
|
nikcleju@2
|
708
|