view pyCSalgos/BP/l1qc.py @ 37:afcfd4d1d548

17.11.2011 Lots of stuff: Implemented l1qec() (variant of l1 minimization with both quadratic and equality constraints - no ABS, no lambda) Implemented SL0a2() (variant of SL0a approximate recovery with both quadratic and equality constraints - no ABS, no lambda) Fixed HUGE bug: was running SL0 instead of BP!!!
author nikcleju
date Thu, 17 Nov 2011 17:29:54 +0000
parents 537f7798e186
children
line wrap: on
line source

import numpy as np
import scipy.linalg
import math

class l1qcInputValueError(Exception):
  pass

#function [x, res, iter] = cgsolve(A, b, tol, maxiter, verbose)
def cgsolve(A, b, tol, maxiter, verbose=1):
    # Solve a symmetric positive definite system Ax = b via conjugate gradients.
    #
    # Usage: [x, res, iter] = cgsolve(A, b, tol, maxiter, verbose)
    #
    # A - Either an NxN matrix, or a function handle.
    #
    # b - N vector
    #
    # tol - Desired precision.  Algorithm terminates when 
    #    norm(Ax-b)/norm(b) < tol .
    #
    # maxiter - Maximum number of iterations.
    #
    # verbose - If 0, do not print out progress messages.
    #    If and integer greater than 0, print out progress every 'verbose' iters.
    #
    # Written by: Justin Romberg, Caltech
    # Email: jrom@acm.caltech.edu
    # Created: October 2005
    #

    #---------------------
    # Original Matab code:
    #        
    #if (nargin < 5), verbose = 1; end
    #
    #implicit = isa(A,'function_handle');
    #
    #x = zeros(length(b),1);
    #r = b;
    #d = r;
    #delta = r'*r;
    #delta0 = b'*b;
    #numiter = 0;
    #bestx = x;
    #bestres = sqrt(delta/delta0); 
    #while ((numiter < maxiter) && (delta > tol^2*delta0))
    #
    #  # q = A*d
    #  if (implicit), q = A(d);  else  q = A*d;  end
    # 
    #  alpha = delta/(d'*q);
    #  x = x + alpha*d;
    #  
    #  if (mod(numiter+1,50) == 0)
    #    # r = b - Aux*x
    #    if (implicit), r = b - A(x);  else  r = b - A*x;  end
    #  else
    #    r = r - alpha*q;
    #  end
    #  
    #  deltaold = delta;
    #  delta = r'*r;
    #  beta = delta/deltaold;
    #  d = r + beta*d;
    #  numiter = numiter + 1;
    #  if (sqrt(delta/delta0) < bestres)
    #    bestx = x;
    #    bestres = sqrt(delta/delta0);
    #  end    
    #  
    #  if ((verbose) && (mod(numiter,verbose)==0))
    #    disp(sprintf('cg: Iter = #d, Best residual = #8.3e, Current residual = #8.3e', ...
    #      numiter, bestres, sqrt(delta/delta0)));
    #  end
    #  
    #end
    #
    #if (verbose)
    #  disp(sprintf('cg: Iterations = #d, best residual = #14.8e', numiter, bestres));
    #end
    #x = bestx;
    #res = bestres;
    #iter = numiter;

    # End of original Matab code
    #----------------------------
    
    #if (nargin < 5), verbose = 1; end
    # Optional argument
    
    #implicit = isa(A,'function_handle');
    if hasattr(A, '__call__'):
        implicit = True
    else:
        implicit = False
    
    x = np.zeros(b.size)
    r = b.copy()
    d = r.copy()
    delta = np.vdot(r,r)
    delta0 = np.vdot(b,b)
    numiter = 0
    bestx = x.copy()
    bestres = math.sqrt(delta/delta0)
    while (numiter < maxiter) and (delta > tol**2*delta0):
    
      # q = A*d
      #if (implicit), q = A(d);  else  q = A*d;  end
      if implicit:
          q = A(d)
      else:
          q = np.dot(A,d)
     
      alpha = delta/np.vdot(d,q)
      x = x + alpha*d
      
      if divmod(numiter+1,50)[1] == 0:
        # r = b - Aux*x
        #if (implicit), r = b - A(x);  else  r = b - A*x;  end
        if implicit:
            r = b - A(x)
        else:
            r = b - np.dot(A,x)
      else:
        r = r - alpha*q
      #end
      
      deltaold = delta;
      delta = np.vdot(r,r)
      beta = delta/deltaold;
      d = r + beta*d
      numiter = numiter + 1
      if (math.sqrt(delta/delta0) < bestres):
        bestx = x.copy()
        bestres = math.sqrt(delta/delta0)
      #end    
      
      if ((verbose) and (divmod(numiter,verbose)[1]==0)):
        #disp(sprintf('cg: Iter = #d, Best residual = #8.3e, Current residual = #8.3e', ...
        #  numiter, bestres, sqrt(delta/delta0)));
        print 'cg: Iter = ',numiter,', Best residual = ',bestres,', Current residual = ',math.sqrt(delta/delta0)
      #end
      
    #end
    
    if (verbose):
      #disp(sprintf('cg: Iterations = #d, best residual = #14.8e', numiter, bestres));
      print 'cg: Iterations = ',numiter,', best residual = ',bestres
    #end
    x = bestx.copy()
    res = bestres
    iter = numiter
    
    return x,res,iter



#function [xp, up, niter] = l1qc_newton(x0, u0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter) 
def l1qc_newton(x0, u0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter, verbose=False):
    # Newton algorithm for log-barrier subproblems for l1 minimization
    # with quadratic constraints.
    #
    # Usage: 
    # [xp,up,niter] = l1qc_newton(x0, u0, A, At, b, epsilon, tau, 
    #                             newtontol, newtonmaxiter, cgtol, cgmaxiter)
    #
    # x0,u0 - starting points
    #
    # A - Either a handle to a function that takes a N vector and returns a K 
    #     vector , or a KxN matrix.  If A is a function handle, the algorithm
    #     operates in "largescale" mode, solving the Newton systems via the
    #     Conjugate Gradients algorithm.
    #
    # At - Handle to a function that takes a K vector and returns an N vector.
    #      If A is a KxN matrix, At is ignored.
    #
    # b - Kx1 vector of observations.
    #
    # epsilon - scalar, constraint relaxation parameter
    #
    # tau - Log barrier parameter.
    #
    # newtontol - Terminate when the Newton decrement is <= newtontol.
    #         Default = 1e-3.
    #
    # newtonmaxiter - Maximum number of iterations.
    #         Default = 50.
    #
    # cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
    #     Default = 1e-8.
    #
    # cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
    #     if A is a matrix.
    #     Default = 200.
    #
    # Written by: Justin Romberg, Caltech
    # Email: jrom@acm.caltech.edu
    # Created: October 2005
    #
    
    #---------------------
    # Original Matab code:
    
    ## check if the mix A is implicit or explicit
    #largescale = isa(A,'function_handle');
    #
    ## line search parameters
    #alpha = 0.01;
    #beta = 0.5;  
    #
    #if (~largescale), AtA = A'*A; end
    #
    ## initial point
    #x = x0;
    #u = u0;
    #if (largescale), r = A(x) - b; else  r = A*x - b; end
    #fu1 = x - u;
    #fu2 = -x - u;
    #fe = 1/2*(r'*r - epsilon^2);
    #f = sum(u) - (1/tau)*(sum(log(-fu1)) + sum(log(-fu2)) + log(-fe));
    #
    #niter = 0;
    #done = 0;
    #while (~done)
    #  
    #  if (largescale), atr = At(r); else  atr = A'*r; end
    #  
    #  ntgz = 1./fu1 - 1./fu2 + 1/fe*atr;
    #  ntgu = -tau - 1./fu1 - 1./fu2;
    #  gradf = -(1/tau)*[ntgz; ntgu];
    #  
    #  sig11 = 1./fu1.^2 + 1./fu2.^2;
    #  sig12 = -1./fu1.^2 + 1./fu2.^2;
    #  sigx = sig11 - sig12.^2./sig11;
    #    
    #  w1p = ntgz - sig12./sig11.*ntgu;
    #  if (largescale)
    #    h11pfun = @(z) sigx.*z - (1/fe)*At(A(z)) + 1/fe^2*(atr'*z)*atr;
    #    [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0);
    #    if (cgres > 1/2)
    #      disp('Cannot solve system.  Returning previous iterate.  (See Section 4 of notes for more information.)');
    #      xp = x;  up = u;
    #      return
    #    end
    #    Adx = A(dx);
    #  else
    #    H11p = diag(sigx) - (1/fe)*AtA + (1/fe)^2*atr*atr';
    #    opts.POSDEF = true; opts.SYM = true;
    #    [dx,hcond] = linsolve(H11p, w1p, opts);
    #    if (hcond < 1e-14)
    #      disp('Matrix ill-conditioned.  Returning previous iterate.  (See Section 4 of notes for more information.)');
    #      xp = x;  up = u;
    #      return
    #    end
    #    Adx = A*dx;
    #  end
    #  du = (1./sig11).*ntgu - (sig12./sig11).*dx;  
    # 
    #  # minimum step size that stays in the interior
    #  ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0);
    #  aqe = Adx'*Adx;   bqe = 2*r'*Adx;   cqe = r'*r - epsilon^2;
    #  smax = min(1,min([...
    #    -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ...
    #    (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe)
    #    ]));
    #  s = (0.99)*smax;
    #  
    #  # backtracking line search
    #  suffdec = 0;
    #  backiter = 0;
    #  while (~suffdec)
    #    xp = x + s*dx;  up = u + s*du;  rp = r + s*Adx;
    #    fu1p = xp - up;  fu2p = -xp - up;  fep = 1/2*(rp'*rp - epsilon^2);
    #    fp = sum(up) - (1/tau)*(sum(log(-fu1p)) + sum(log(-fu2p)) + log(-fep));
    #    flin = f + alpha*s*(gradf'*[dx; du]);
    #    suffdec = (fp <= flin);
    #    s = beta*s;
    #    backiter = backiter + 1;
    #    if (backiter > 32)
    #      disp('Stuck on backtracking line search, returning previous iterate.  (See Section 4 of notes for more information.)');
    #      xp = x;  up = u;
    #      return
    #    end
    #  end
    #  
    #  # set up for next iteration
    #  x = xp; u = up;  r = rp;
    #  fu1 = fu1p;  fu2 = fu2p;  fe = fep;  f = fp;
    #  
    #  lambda2 = -(gradf'*[dx; du]);
    #  stepsize = s*norm([dx; du]);
    #  niter = niter + 1;
    #  done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);
    #  
    #  disp(sprintf('Newton iter = #d, Functional = #8.3f, Newton decrement = #8.3f, Stepsize = #8.3e', ...
    #    niter, f, lambda2/2, stepsize));
    #  if (largescale)
    #    disp(sprintf('                CG Res = #8.3e, CG Iter = #d', cgres, cgiter));
    #  else
    #    disp(sprintf('                  H11p condition number = #8.3e', hcond));
    #  end
    #      
    #end
    
    # End of original Matab code
    #----------------------------
    
    # check if the matrix A is implicit or explicit
    #largescale = isa(A,'function_handle');
    if hasattr(A, '__call__'):
        largescale = True
    else:
        largescale = False    
    
    # line search parameters
    alpha = 0.01
    beta = 0.5
    
    #if (~largescale), AtA = A'*A; end
    if not largescale:
        AtA = np.dot(A.T,A)
    
    # initial point
    x = x0.copy()
    u = u0.copy()
    #if (largescale), r = A(x) - b; else  r = A*x - b; end
    if largescale:
        r = A(x) - b
    else:
        r = np.dot(A,x) - b
        
    fu1 = x - u
    fu2 = -x - u
    fe = 1.0/2*(np.vdot(r,r) - epsilon**2)
    f = u.sum() - (1.0/tau)*(np.log(-fu1).sum() + np.log(-fu2).sum() + math.log(-fe))
    
    niter = 0
    done = 0
    while not done:
      
      #if (largescale), atr = At(r); else  atr = A'*r; end
      if largescale:
          atr = At(r)
      else:
          atr = np.dot(A.T,r)
      
      #ntgz = 1./fu1 - 1./fu2 + 1/fe*atr;
      ntgz = 1.0/fu1 - 1.0/fu2 + 1.0/fe*atr
      #ntgu = -tau - 1./fu1 - 1./fu2;
      ntgu = -tau - 1.0/fu1 - 1.0/fu2
      #gradf = -(1/tau)*[ntgz; ntgu];
      gradf = -(1.0/tau)*np.concatenate((ntgz, ntgu),0)
      
      #sig11 = 1./fu1.^2 + 1./fu2.^2;
      sig11 = 1.0/(fu1**2) + 1.0/(fu2**2)
      #sig12 = -1./fu1.^2 + 1./fu2.^2;
      sig12 = -1.0/(fu1**2) + 1.0/(fu2**2)
      #sigx = sig11 - sig12.^2./sig11;
      sigx = sig11 - (sig12**2)/sig11
        
      #w1p = ntgz - sig12./sig11.*ntgu;
      w1p = ntgz - sig12/sig11*ntgu
      if largescale:
        #h11pfun = @(z) sigx.*z - (1/fe)*At(A(z)) + 1/fe^2*(atr'*z)*atr;
        h11pfun = lambda z: sigx*z - (1.0/fe)*At(A(z)) + 1.0/(fe**2)*np.dot(np.dot(atr.T,z),atr)
        dx,cgres,cgiter = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0)
        if (cgres > 1.0/2):
          if verbose:
            print 'Cannot solve system.  Returning previous iterate.  (See Section 4 of notes for more information.)'
          xp = x.copy()
          up = u.copy()
          return xp,up,niter
        #end
        Adx = A(dx)
      else:
        #H11p = diag(sigx) - (1/fe)*AtA + (1/fe)^2*atr*atr';
        # Attention: atr is column vector, so atr*atr' means outer(atr,atr)
        H11p = np.diag(sigx) - (1.0/fe)*AtA + (1.0/fe)**2*np.outer(atr,atr)
        #opts.POSDEF = true; opts.SYM = true;
        #[dx,hcond] = linsolve(H11p, w1p, opts);
        #if (hcond < 1e-14)
        #  disp('Matrix ill-conditioned.  Returning previous iterate.  (See Section 4 of notes for more information.)');
        #  xp = x;  up = u;
        #  return
        #end
        try:
            dx = scipy.linalg.solve(H11p, w1p, sym_pos=True)
            #dx = np.linalg.solve(H11p, w1p)
            hcond = 1.0/np.linalg.cond(H11p)
        except scipy.linalg.LinAlgError:
            if verbose:
              print 'Matrix ill-conditioned.  Returning previous iterate.  (See Section 4 of notes for more information.)'
            xp = x.copy()
            up = u.copy()
            return xp,up,niter
        if hcond < 1e-14:
            if verbose:
              print 'Matrix ill-conditioned.  Returning previous iterate.  (See Section 4 of notes for more information.)'
            xp = x.copy()
            up = u.copy()
            return xp,up,niter
        
        #Adx = A*dx;
        Adx = np.dot(A,dx)
      #end
      #du = (1./sig11).*ntgu - (sig12./sig11).*dx;  
      du = (1.0/sig11)*ntgu - (sig12/sig11)*dx;
     
      # minimum step size that stays in the interior
      #ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0);
      ifu1 = np.nonzero((dx-du)>0)
      ifu2 = np.nonzero((-dx-du)>0)
      #aqe = Adx'*Adx;   bqe = 2*r'*Adx;   cqe = r'*r - epsilon^2;
      aqe = np.dot(Adx.T,Adx)
      bqe = 2*np.dot(r.T,Adx)
      cqe = np.vdot(r,r) - epsilon**2
      #smax = min(1,min([...
      #  -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ...
      #  (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe)
      #  ]));
      smax = min(1,np.concatenate( (-fu1[ifu1]/(dx[ifu1]-du[ifu1]) , -fu2[ifu2]/(-dx[ifu2]-du[ifu2]) , np.array([ (-bqe + math.sqrt(bqe**2-4*aqe*cqe))/(2*aqe) ]) ) , 0).min())
      
      s = 0.99 * smax
      
      # backtracking line search
      suffdec = 0
      backiter = 0
      while not suffdec:
        #xp = x + s*dx;  up = u + s*du;  rp = r + s*Adx;
        xp = x + s*dx
        up = u + s*du
        rp = r + s*Adx
        #fu1p = xp - up;  fu2p = -xp - up;  fep = 1/2*(rp'*rp - epsilon^2);
        fu1p = xp - up
        fu2p = -xp - up
        fep = 0.5*(np.vdot(rp,rp) - epsilon**2)
        #fp = sum(up) - (1/tau)*(sum(log(-fu1p)) + sum(log(-fu2p)) + log(-fep));
        fp = up.sum() - (1.0/tau)*(np.log(-fu1p).sum() + np.log(-fu2p).sum() + math.log(-fep))
        #flin = f + alpha*s*(gradf'*[dx; du]);
        flin = f + alpha*s*np.dot(gradf.T , np.concatenate((dx,du),0))
        #suffdec = (fp <= flin);
        if fp <= flin:
            suffdec = True
        else:
            suffdec = False
        
        s = beta*s
        backiter = backiter + 1
        if (backiter > 32):
          if verbose:
            print 'Stuck on backtracking line search, returning previous iterate.  (See Section 4 of notes for more information.)'
          xp = x.copy()
          up = u.copy()
          return xp,up,niter
        #end
      #end
      
      # set up for next iteration
      #x = xp; u = up;  r = rp;
      x = xp.copy()
      u = up.copy()
      r = rp.copy()
      #fu1 = fu1p;  fu2 = fu2p;  fe = fep;  f = fp;
      fu1 = fu1p.copy()
      fu2 = fu2p.copy()
      fe = fep
      f = fp
      
      #lambda2 = -(gradf'*[dx; du]);
      lambda2 = -np.dot(gradf.T , np.concatenate((dx,du),0))
      #stepsize = s*norm([dx; du]);
      stepsize = s * np.linalg.norm(np.concatenate((dx,du),0))
      niter = niter + 1
      #done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter);
      if lambda2/2.0 < newtontol or niter >= newtonmaxiter:
          done = 1
      else:
          done = 0
      
      #disp(sprintf('Newton iter = #d, Functional = #8.3f, Newton decrement = #8.3f, Stepsize = #8.3e', ...
      if verbose:
        print 'Newton iter = ',niter,', Functional = ',f,', Newton decrement = ',lambda2/2.0,', Stepsize = ',stepsize

      if verbose:
        if largescale:
          print '                CG Res = ',cgres,', CG Iter = ',cgiter
        else:
          print '                  H11p condition number = ',hcond
      #end
          
    #end
    return xp,up,niter

#function xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
def l1qc_logbarrier(x0, A, At, b, epsilon, lbtol=1e-3, mu=10, cgtol=1e-8, cgmaxiter=200, verbose=False):
    # Solve quadratically constrained l1 minimization:
    # min ||x||_1   s.t.  ||Ax - b||_2 <= \epsilon
    #
    # Reformulate as the second-order cone program
    # min_{x,u}  sum(u)   s.t.    x - u <= 0,
    #                            -x - u <= 0,
    #      1/2(||Ax-b||^2 - \epsilon^2) <= 0
    # and use a log barrier algorithm.
    #
    # Usage:  xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
    #
    # x0 - Nx1 vector, initial point.
    #
    # A - Either a handle to a function that takes a N vector and returns a K 
    #     vector , or a KxN matrix.  If A is a function handle, the algorithm
    #     operates in "largescale" mode, solving the Newton systems via the
    #     Conjugate Gradients algorithm.
    #
    # At - Handle to a function that takes a K vector and returns an N vector.
    #      If A is a KxN matrix, At is ignored.
    #
    # b - Kx1 vector of observations.
    #
    # epsilon - scalar, constraint relaxation parameter
    #
    # lbtol - The log barrier algorithm terminates when the duality gap <= lbtol.
    #         Also, the number of log barrier iterations is completely
    #         determined by lbtol.
    #         Default = 1e-3.
    #
    # mu - Factor by which to increase the barrier constant at each iteration.
    #      Default = 10.
    #
    # cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
    #     Default = 1e-8.
    #
    # cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
    #     if A is a matrix.
    #     Default = 200.
    #
    # Written by: Justin Romberg, Caltech
    # Email: jrom@acm.caltech.edu
    # Created: October 2005
    #

    #---------------------
    # Original Matab code:
    
    #largescale = isa(A,'function_handle');
    #
    #if (nargin < 6), lbtol = 1e-3; end
    #if (nargin < 7), mu = 10; end
    #if (nargin < 8), cgtol = 1e-8; end
    #if (nargin < 9), cgmaxiter = 200; end
    #
    #newtontol = lbtol;
    #newtonmaxiter = 50;
    #
    #N = length(x0);
    #
    ## starting point --- make sure that it is feasible
    #if (largescale)
    #  if (norm(A(x0)-b) > epsilon)
    #    disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
    #    AAt = @(z) A(At(z));
    #    w = cgsolve(AAt, b, cgtol, cgmaxiter, 0);
    #    if (cgres > 1/2)
    #      disp('A*At is ill-conditioned: cannot find starting point');
    #      xp = x0;
    #      return;
    #    end
    #    x0 = At(w);
    #  end
    #else
    #  if (norm(A*x0-b) > epsilon)
    #    disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
    #    opts.POSDEF = true; opts.SYM = true;
    #    [w, hcond] = linsolve(A*A', b, opts);
    #    if (hcond < 1e-14)
    #      disp('A*At is ill-conditioned: cannot find starting point');
    #      xp = x0;
    #      return;
    #    end
    #    x0 = A'*w;
    #  end  
    #end
    #x = x0;
    #u = (0.95)*abs(x0) + (0.10)*max(abs(x0));
    #
    #disp(sprintf('Original l1 norm = #.3f, original functional = #.3f', sum(abs(x0)), sum(u)));
    #
    ## choose initial value of tau so that the duality gap after the first
    ## step will be about the origial norm
    #tau = max((2*N+1)/sum(abs(x0)), 1);
    #                                                                                                                          
    #lbiter = ceil((log(2*N+1)-log(lbtol)-log(tau))/log(mu));
    #disp(sprintf('Number of log barrier iterations = #d\n', lbiter));
    #
    #totaliter = 0;
    #
    ## Added by Nic
    #if lbiter == 0
    #    xp = zeros(size(x0));
    #end
    #
    #for ii = 1:lbiter
    #
    #  [xp, up, ntiter] = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter);
    #  totaliter = totaliter + ntiter;
    #  
    #  disp(sprintf('\nLog barrier iter = #d, l1 = #.3f, functional = #8.3f, tau = #8.3e, total newton iter = #d\n', ...
    #    ii, sum(abs(xp)), sum(up), tau, totaliter));
    #  
    #  x = xp;
    #  u = up;
    # 
    #  tau = mu*tau;
    #  
    #end
    #
    # End of original Matab code
    #----------------------------
    
    # Check if epsilon > 0. If epsilon is 0, the algorithm fails. You should run the algo with equality constraint instead  
    if epsilon == 0:
      raise l1qcInputValueError('Epsilon should be > 0!')       
    
    #largescale = isa(A,'function_handle');
    if hasattr(A, '__call__'):
        largescale = True
    else:
        largescale = False
    
    #    if (nargin < 6), lbtol = 1e-3; end
    #    if (nargin < 7), mu = 10; end
    #    if (nargin < 8), cgtol = 1e-8; end
    #    if (nargin < 9), cgmaxiter = 200; end
    # Nic: added them as optional parameteres
    
    newtontol = lbtol
    newtonmaxiter = 50
    
    #N = length(x0);
    N = x0.size
    
    # starting point --- make sure that it is feasible
    if largescale:
      if np.linalg.norm(A(x0) - b) > epsilon:
        if verbose:
          print 'Starting point infeasible; using x0 = At*inv(AAt)*y.'
        #AAt = @(z) A(At(z));
        AAt = lambda z: A(At(z))
        # TODO: implement cgsolve
        w,cgres,cgiter = cgsolve(AAt, b, cgtol, cgmaxiter, 0)
        if (cgres > 1.0/2):
          if verbose:
            print 'A*At is ill-conditioned: cannot find starting point'
          xp = x0.copy()
          return xp
        #end
        x0 = At(w)
      #end
    else:
      if np.linalg.norm( np.dot(A,x0) - b ) > epsilon:
        if verbose:
          print 'Starting point infeasible; using x0 = At*inv(AAt)*y.'
        #opts.POSDEF = true; opts.SYM = true;
        #[w, hcond] = linsolve(A*A', b, opts);
        #if (hcond < 1e-14)
        #  disp('A*At is ill-conditioned: cannot find starting point');
        #  xp = x0;
        #  return;
        #end
        try:
            w = scipy.linalg.solve(np.dot(A,A.T), b, sym_pos=True)
            #w = np.linalg.solve(np.dot(A,A.T), b)
            hcond = 1.0/np.linalg.cond(np.dot(A,A.T))
        except scipy.linalg.LinAlgError:
            if verbose:
              print 'A*At is ill-conditioned: cannot find starting point'
            xp = x0.copy()
            return xp
        if hcond < 1e-14:
            if verbose:
              print 'A*At is ill-conditioned: cannot find starting point'
            xp = x0.copy()
            return xp           
        #x0 = A'*w;
        x0 = np.dot(A.T, w)
      #end  
    #end
    x = x0.copy()
    u = (0.95)*np.abs(x0) + (0.10)*np.abs(x0).max()
    
    #disp(sprintf('Original l1 norm = #.3f, original functional = #.3f', sum(abs(x0)), sum(u)));
    if verbose:
      print 'Original l1 norm = ',np.abs(x0).sum(),'original functional = ',u.sum()
    
    # choose initial value of tau so that the duality gap after the first
    # step will be about the origial norm
    tau = max(((2*N+1.0)/np.abs(x0).sum()), 1)
                                                                                                                              
    lbiter = math.ceil((math.log(2*N+1)-math.log(lbtol)-math.log(tau))/math.log(mu))
    #disp(sprintf('Number of log barrier iterations = #d\n', lbiter));
    if verbose:
      print 'Number of log barrier iterations = ',lbiter
    
    totaliter = 0
    
    # Added by Nic, to fix some crashing
    if lbiter == 0:
        xp = np.zeros(x0.size)
    #end
    
    #for ii = 1:lbiter
    for ii in np.arange(lbiter):
    
      xp,up,ntiter = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter)
      totaliter = totaliter + ntiter
      
      #disp(sprintf('\nLog barrier iter = #d, l1 = #.3f, functional = #8.3f, tau = #8.3e, total newton iter = #d\n', ...
      #  ii, sum(abs(xp)), sum(up), tau, totaliter));
      if verbose:
        print 'Log barrier iter = ',ii,', l1 = ',np.abs(xp).sum(),', functional = ',up.sum(),', tau = ',tau,', total newton iter = ',totaliter
      x = xp.copy()
      u = up.copy()
     
      tau = mu*tau
      
    #end
    return xp