Mercurial > hg > pmhd
view extra/stft_primer_ejemplo.m @ 13:844d341cf643 tip
Back up before ISMIR
author | Yading Song <yading.song@eecs.qmul.ac.uk> |
---|---|
date | Thu, 31 Oct 2013 13:17:06 +0000 |
parents | 6840f77b83aa |
children |
line wrap: on
line source
function y = stft(x, w, N, H) % Analysis/synthesis of a sound using the short-time fourier transform % x: input sound, w: analysis window (odd size), N: FFT size, H: hop size % y: output sound M = length(w); % analysis window size N2 = N/2+1; % size of positive spectrum soundlength = length(x); % length of input sound array hM = (M-1)/2; % half analysis window size pin = 1+hM; % initialize sound pointer in middle of analysis window pend = soundlength-hM; % last sample to start a frame fftbuffer = zeros(N,1); % initialize buffer for FFT yw = zeros(M,1); % initialize output sound frame y = zeros(soundlength,1); % initialize output array w = w/sum(w); % normalize analysis window while pin<pend %-----analysis-----% xw = x(pin-hM:pin+hM).*w(1:M); % window the input sound fftbuffer(:) = 0; % reset buffer fftbuffer(1:(M+1)/2) = xw((M+1)/2:M); % zero-phase window in fftbuffer fftbuffer(N-(M-1)/2+1:N) = xw(1:(M-1)/2); X = fft(fftbuffer); % compute FFT mX = 20*log10(abs(X(1:N2))); % magnitude spectrum of positive frequencies pX = unwrap(angle(X(1:N2))); % unwrapped phase spect. of positive freq. %-----synthesis-----% Y = zeros(N,1); % initialize output spectrum Y(1:N2) = 10.^(mX/20).*exp(i.*pX); % generate positive freq. Y(N2+1:N) = 10.^(mX(N2-1:-1:2)/20).*exp(-i.*pX(N2-1:-1:2)); % generate neg.freq. fftbuffer = real(ifft(Y)); % inverse FFT yw(1:(M-1)/2) = fftbuffer(N-(M-1)/2+1:N); % undo zero-phase window yw((M+1)/2:M) = fftbuffer(1:(M+1)/2); y(pin-hM:pin+hM) = y(pin-hM:pin+hM) + H*yw(1:M); % overlap-add pin = pin+H; % advance sound pointer end