annotate ffmpeg/libavcodec/g729postfilter.c @ 13:844d341cf643 tip

Back up before ISMIR
author Yading Song <yading.song@eecs.qmul.ac.uk>
date Thu, 31 Oct 2013 13:17:06 +0000
parents 6840f77b83aa
children
rev   line source
yading@10 1 /*
yading@10 2 * G.729, G729 Annex D postfilter
yading@10 3 * Copyright (c) 2008 Vladimir Voroshilov
yading@10 4 *
yading@10 5 * This file is part of FFmpeg.
yading@10 6 *
yading@10 7 * FFmpeg is free software; you can redistribute it and/or
yading@10 8 * modify it under the terms of the GNU Lesser General Public
yading@10 9 * License as published by the Free Software Foundation; either
yading@10 10 * version 2.1 of the License, or (at your option) any later version.
yading@10 11 *
yading@10 12 * FFmpeg is distributed in the hope that it will be useful,
yading@10 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
yading@10 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
yading@10 15 * Lesser General Public License for more details.
yading@10 16 *
yading@10 17 * You should have received a copy of the GNU Lesser General Public
yading@10 18 * License along with FFmpeg; if not, write to the Free Software
yading@10 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
yading@10 20 */
yading@10 21 #include <inttypes.h>
yading@10 22 #include <limits.h>
yading@10 23
yading@10 24 #include "avcodec.h"
yading@10 25 #include "g729.h"
yading@10 26 #include "acelp_pitch_delay.h"
yading@10 27 #include "g729postfilter.h"
yading@10 28 #include "celp_math.h"
yading@10 29 #include "acelp_filters.h"
yading@10 30 #include "acelp_vectors.h"
yading@10 31 #include "celp_filters.h"
yading@10 32
yading@10 33 #define FRAC_BITS 15
yading@10 34 #include "mathops.h"
yading@10 35
yading@10 36 /**
yading@10 37 * short interpolation filter (of length 33, according to spec)
yading@10 38 * for computing signal with non-integer delay
yading@10 39 */
yading@10 40 static const int16_t ff_g729_interp_filt_short[(ANALYZED_FRAC_DELAYS+1)*SHORT_INT_FILT_LEN] = {
yading@10 41 0, 31650, 28469, 23705, 18050, 12266, 7041, 2873,
yading@10 42 0, -1597, -2147, -1992, -1492, -933, -484, -188,
yading@10 43 };
yading@10 44
yading@10 45 /**
yading@10 46 * long interpolation filter (of length 129, according to spec)
yading@10 47 * for computing signal with non-integer delay
yading@10 48 */
yading@10 49 static const int16_t ff_g729_interp_filt_long[(ANALYZED_FRAC_DELAYS+1)*LONG_INT_FILT_LEN] = {
yading@10 50 0, 31915, 29436, 25569, 20676, 15206, 9639, 4439,
yading@10 51 0, -3390, -5579, -6549, -6414, -5392, -3773, -1874,
yading@10 52 0, 1595, 2727, 3303, 3319, 2850, 2030, 1023,
yading@10 53 0, -887, -1527, -1860, -1876, -1614, -1150, -579,
yading@10 54 0, 501, 859, 1041, 1044, 892, 631, 315,
yading@10 55 0, -266, -453, -543, -538, -455, -317, -156,
yading@10 56 0, 130, 218, 258, 253, 212, 147, 72,
yading@10 57 0, -59, -101, -122, -123, -106, -77, -40,
yading@10 58 };
yading@10 59
yading@10 60 /**
yading@10 61 * formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1)
yading@10 62 */
yading@10 63 static const int16_t formant_pp_factor_num_pow[10]= {
yading@10 64 /* (0.15) */
yading@10 65 18022, 9912, 5451, 2998, 1649, 907, 499, 274, 151, 83
yading@10 66 };
yading@10 67
yading@10 68 /**
yading@10 69 * formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1)
yading@10 70 */
yading@10 71 static const int16_t formant_pp_factor_den_pow[10] = {
yading@10 72 /* (0.15) */
yading@10 73 22938, 16057, 11240, 7868, 5508, 3856, 2699, 1889, 1322, 925
yading@10 74 };
yading@10 75
yading@10 76 /**
yading@10 77 * \brief Residual signal calculation (4.2.1 if G.729)
yading@10 78 * \param out [out] output data filtered through A(z/FORMANT_PP_FACTOR_NUM)
yading@10 79 * \param filter_coeffs (3.12) A(z/FORMANT_PP_FACTOR_NUM) filter coefficients
yading@10 80 * \param in input speech data to process
yading@10 81 * \param subframe_size size of one subframe
yading@10 82 *
yading@10 83 * \note in buffer must contain 10 items of previous speech data before top of the buffer
yading@10 84 * \remark It is safe to pass the same buffer for input and output.
yading@10 85 */
yading@10 86 static void residual_filter(int16_t* out, const int16_t* filter_coeffs, const int16_t* in,
yading@10 87 int subframe_size)
yading@10 88 {
yading@10 89 int i, n;
yading@10 90
yading@10 91 for (n = subframe_size - 1; n >= 0; n--) {
yading@10 92 int sum = 0x800;
yading@10 93 for (i = 0; i < 10; i++)
yading@10 94 sum += filter_coeffs[i] * in[n - i - 1];
yading@10 95
yading@10 96 out[n] = in[n] + (sum >> 12);
yading@10 97 }
yading@10 98 }
yading@10 99
yading@10 100 /**
yading@10 101 * \brief long-term postfilter (4.2.1)
yading@10 102 * \param dsp initialized DSP context
yading@10 103 * \param pitch_delay_int integer part of the pitch delay in the first subframe
yading@10 104 * \param residual filtering input data
yading@10 105 * \param residual_filt [out] speech signal with applied A(z/FORMANT_PP_FACTOR_NUM) filter
yading@10 106 * \param subframe_size size of subframe
yading@10 107 *
yading@10 108 * \return 0 if long-term prediction gain is less than 3dB, 1 - otherwise
yading@10 109 */
yading@10 110 static int16_t long_term_filter(DSPContext *dsp, int pitch_delay_int,
yading@10 111 const int16_t* residual, int16_t *residual_filt,
yading@10 112 int subframe_size)
yading@10 113 {
yading@10 114 int i, k, tmp, tmp2;
yading@10 115 int sum;
yading@10 116 int L_temp0;
yading@10 117 int L_temp1;
yading@10 118 int64_t L64_temp0;
yading@10 119 int64_t L64_temp1;
yading@10 120 int16_t shift;
yading@10 121 int corr_int_num, corr_int_den;
yading@10 122
yading@10 123 int ener;
yading@10 124 int16_t sh_ener;
yading@10 125
yading@10 126 int16_t gain_num,gain_den; //selected signal's gain numerator and denominator
yading@10 127 int16_t sh_gain_num, sh_gain_den;
yading@10 128 int gain_num_square;
yading@10 129
yading@10 130 int16_t gain_long_num,gain_long_den; //filtered through long interpolation filter signal's gain numerator and denominator
yading@10 131 int16_t sh_gain_long_num, sh_gain_long_den;
yading@10 132
yading@10 133 int16_t best_delay_int, best_delay_frac;
yading@10 134
yading@10 135 int16_t delayed_signal_offset;
yading@10 136 int lt_filt_factor_a, lt_filt_factor_b;
yading@10 137
yading@10 138 int16_t * selected_signal;
yading@10 139 const int16_t * selected_signal_const; //Necessary to avoid compiler warning
yading@10 140
yading@10 141 int16_t sig_scaled[SUBFRAME_SIZE + RES_PREV_DATA_SIZE];
yading@10 142 int16_t delayed_signal[ANALYZED_FRAC_DELAYS][SUBFRAME_SIZE+1];
yading@10 143 int corr_den[ANALYZED_FRAC_DELAYS][2];
yading@10 144
yading@10 145 tmp = 0;
yading@10 146 for(i=0; i<subframe_size + RES_PREV_DATA_SIZE; i++)
yading@10 147 tmp |= FFABS(residual[i]);
yading@10 148
yading@10 149 if(!tmp)
yading@10 150 shift = 3;
yading@10 151 else
yading@10 152 shift = av_log2(tmp) - 11;
yading@10 153
yading@10 154 if (shift > 0)
yading@10 155 for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
yading@10 156 sig_scaled[i] = residual[i] >> shift;
yading@10 157 else
yading@10 158 for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
yading@10 159 sig_scaled[i] = residual[i] << -shift;
yading@10 160
yading@10 161 /* Start of best delay searching code */
yading@10 162 gain_num = 0;
yading@10 163
yading@10 164 ener = dsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
yading@10 165 sig_scaled + RES_PREV_DATA_SIZE,
yading@10 166 subframe_size);
yading@10 167 if (ener) {
yading@10 168 sh_ener = FFMAX(av_log2(ener) - 14, 0);
yading@10 169 ener >>= sh_ener;
yading@10 170 /* Search for best pitch delay.
yading@10 171
yading@10 172 sum{ r(n) * r(k,n) ] }^2
yading@10 173 R'(k)^2 := -------------------------
yading@10 174 sum{ r(k,n) * r(k,n) }
yading@10 175
yading@10 176
yading@10 177 R(T) := sum{ r(n) * r(n-T) ] }
yading@10 178
yading@10 179
yading@10 180 where
yading@10 181 r(n-T) is integer delayed signal with delay T
yading@10 182 r(k,n) is non-integer delayed signal with integer delay best_delay
yading@10 183 and fractional delay k */
yading@10 184
yading@10 185 /* Find integer delay best_delay which maximizes correlation R(T).
yading@10 186
yading@10 187 This is also equals to numerator of R'(0),
yading@10 188 since the fine search (second step) is done with 1/8
yading@10 189 precision around best_delay. */
yading@10 190 corr_int_num = 0;
yading@10 191 best_delay_int = pitch_delay_int - 1;
yading@10 192 for (i = pitch_delay_int - 1; i <= pitch_delay_int + 1; i++) {
yading@10 193 sum = dsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
yading@10 194 sig_scaled + RES_PREV_DATA_SIZE - i,
yading@10 195 subframe_size);
yading@10 196 if (sum > corr_int_num) {
yading@10 197 corr_int_num = sum;
yading@10 198 best_delay_int = i;
yading@10 199 }
yading@10 200 }
yading@10 201 if (corr_int_num) {
yading@10 202 /* Compute denominator of pseudo-normalized correlation R'(0). */
yading@10 203 corr_int_den = dsp->scalarproduct_int16(sig_scaled - best_delay_int + RES_PREV_DATA_SIZE,
yading@10 204 sig_scaled - best_delay_int + RES_PREV_DATA_SIZE,
yading@10 205 subframe_size);
yading@10 206
yading@10 207 /* Compute signals with non-integer delay k (with 1/8 precision),
yading@10 208 where k is in [0;6] range.
yading@10 209 Entire delay is qual to best_delay+(k+1)/8
yading@10 210 This is archieved by applying an interpolation filter of
yading@10 211 legth 33 to source signal. */
yading@10 212 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
yading@10 213 ff_acelp_interpolate(&delayed_signal[k][0],
yading@10 214 &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int],
yading@10 215 ff_g729_interp_filt_short,
yading@10 216 ANALYZED_FRAC_DELAYS+1,
yading@10 217 8 - k - 1,
yading@10 218 SHORT_INT_FILT_LEN,
yading@10 219 subframe_size + 1);
yading@10 220 }
yading@10 221
yading@10 222 /* Compute denominator of pseudo-normalized correlation R'(k).
yading@10 223
yading@10 224 corr_den[k][0] is square root of R'(k) denominator, for int(T) == int(T0)
yading@10 225 corr_den[k][1] is square root of R'(k) denominator, for int(T) == int(T0)+1
yading@10 226
yading@10 227 Also compute maximum value of above denominators over all k. */
yading@10 228 tmp = corr_int_den;
yading@10 229 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
yading@10 230 sum = dsp->scalarproduct_int16(&delayed_signal[k][1],
yading@10 231 &delayed_signal[k][1],
yading@10 232 subframe_size - 1);
yading@10 233 corr_den[k][0] = sum + delayed_signal[k][0 ] * delayed_signal[k][0 ];
yading@10 234 corr_den[k][1] = sum + delayed_signal[k][subframe_size] * delayed_signal[k][subframe_size];
yading@10 235
yading@10 236 tmp = FFMAX3(tmp, corr_den[k][0], corr_den[k][1]);
yading@10 237 }
yading@10 238
yading@10 239 sh_gain_den = av_log2(tmp) - 14;
yading@10 240 if (sh_gain_den >= 0) {
yading@10 241
yading@10 242 sh_gain_num = FFMAX(sh_gain_den, sh_ener);
yading@10 243 /* Loop through all k and find delay that maximizes
yading@10 244 R'(k) correlation.
yading@10 245 Search is done in [int(T0)-1; intT(0)+1] range
yading@10 246 with 1/8 precision. */
yading@10 247 delayed_signal_offset = 1;
yading@10 248 best_delay_frac = 0;
yading@10 249 gain_den = corr_int_den >> sh_gain_den;
yading@10 250 gain_num = corr_int_num >> sh_gain_num;
yading@10 251 gain_num_square = gain_num * gain_num;
yading@10 252 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
yading@10 253 for (i = 0; i < 2; i++) {
yading@10 254 int16_t gain_num_short, gain_den_short;
yading@10 255 int gain_num_short_square;
yading@10 256 /* Compute numerator of pseudo-normalized
yading@10 257 correlation R'(k). */
yading@10 258 sum = dsp->scalarproduct_int16(&delayed_signal[k][i],
yading@10 259 sig_scaled + RES_PREV_DATA_SIZE,
yading@10 260 subframe_size);
yading@10 261 gain_num_short = FFMAX(sum >> sh_gain_num, 0);
yading@10 262
yading@10 263 /*
yading@10 264 gain_num_short_square gain_num_square
yading@10 265 R'(T)^2 = -----------------------, max R'(T)^2= --------------
yading@10 266 den gain_den
yading@10 267 */
yading@10 268 gain_num_short_square = gain_num_short * gain_num_short;
yading@10 269 gain_den_short = corr_den[k][i] >> sh_gain_den;
yading@10 270
yading@10 271 tmp = MULL(gain_num_short_square, gain_den, FRAC_BITS);
yading@10 272 tmp2 = MULL(gain_num_square, gain_den_short, FRAC_BITS);
yading@10 273
yading@10 274 // R'(T)^2 > max R'(T)^2
yading@10 275 if (tmp > tmp2) {
yading@10 276 gain_num = gain_num_short;
yading@10 277 gain_den = gain_den_short;
yading@10 278 gain_num_square = gain_num_short_square;
yading@10 279 delayed_signal_offset = i;
yading@10 280 best_delay_frac = k + 1;
yading@10 281 }
yading@10 282 }
yading@10 283 }
yading@10 284
yading@10 285 /*
yading@10 286 R'(T)^2
yading@10 287 2 * --------- < 1
yading@10 288 R(0)
yading@10 289 */
yading@10 290 L64_temp0 = (int64_t)gain_num_square << ((sh_gain_num << 1) + 1);
yading@10 291 L64_temp1 = ((int64_t)gain_den * ener) << (sh_gain_den + sh_ener);
yading@10 292 if (L64_temp0 < L64_temp1)
yading@10 293 gain_num = 0;
yading@10 294 } // if(sh_gain_den >= 0)
yading@10 295 } // if(corr_int_num)
yading@10 296 } // if(ener)
yading@10 297 /* End of best delay searching code */
yading@10 298
yading@10 299 if (!gain_num) {
yading@10 300 memcpy(residual_filt, residual + RES_PREV_DATA_SIZE, subframe_size * sizeof(int16_t));
yading@10 301
yading@10 302 /* Long-term prediction gain is less than 3dB. Long-term postfilter is disabled. */
yading@10 303 return 0;
yading@10 304 }
yading@10 305 if (best_delay_frac) {
yading@10 306 /* Recompute delayed signal with an interpolation filter of length 129. */
yading@10 307 ff_acelp_interpolate(residual_filt,
yading@10 308 &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int + delayed_signal_offset],
yading@10 309 ff_g729_interp_filt_long,
yading@10 310 ANALYZED_FRAC_DELAYS + 1,
yading@10 311 8 - best_delay_frac,
yading@10 312 LONG_INT_FILT_LEN,
yading@10 313 subframe_size + 1);
yading@10 314 /* Compute R'(k) correlation's numerator. */
yading@10 315 sum = dsp->scalarproduct_int16(residual_filt,
yading@10 316 sig_scaled + RES_PREV_DATA_SIZE,
yading@10 317 subframe_size);
yading@10 318
yading@10 319 if (sum < 0) {
yading@10 320 gain_long_num = 0;
yading@10 321 sh_gain_long_num = 0;
yading@10 322 } else {
yading@10 323 tmp = FFMAX(av_log2(sum) - 14, 0);
yading@10 324 sum >>= tmp;
yading@10 325 gain_long_num = sum;
yading@10 326 sh_gain_long_num = tmp;
yading@10 327 }
yading@10 328
yading@10 329 /* Compute R'(k) correlation's denominator. */
yading@10 330 sum = dsp->scalarproduct_int16(residual_filt, residual_filt, subframe_size);
yading@10 331
yading@10 332 tmp = FFMAX(av_log2(sum) - 14, 0);
yading@10 333 sum >>= tmp;
yading@10 334 gain_long_den = sum;
yading@10 335 sh_gain_long_den = tmp;
yading@10 336
yading@10 337 /* Select between original and delayed signal.
yading@10 338 Delayed signal will be selected if it increases R'(k)
yading@10 339 correlation. */
yading@10 340 L_temp0 = gain_num * gain_num;
yading@10 341 L_temp0 = MULL(L_temp0, gain_long_den, FRAC_BITS);
yading@10 342
yading@10 343 L_temp1 = gain_long_num * gain_long_num;
yading@10 344 L_temp1 = MULL(L_temp1, gain_den, FRAC_BITS);
yading@10 345
yading@10 346 tmp = ((sh_gain_long_num - sh_gain_num) << 1) - (sh_gain_long_den - sh_gain_den);
yading@10 347 if (tmp > 0)
yading@10 348 L_temp0 >>= tmp;
yading@10 349 else
yading@10 350 L_temp1 >>= -tmp;
yading@10 351
yading@10 352 /* Check if longer filter increases the values of R'(k). */
yading@10 353 if (L_temp1 > L_temp0) {
yading@10 354 /* Select long filter. */
yading@10 355 selected_signal = residual_filt;
yading@10 356 gain_num = gain_long_num;
yading@10 357 gain_den = gain_long_den;
yading@10 358 sh_gain_num = sh_gain_long_num;
yading@10 359 sh_gain_den = sh_gain_long_den;
yading@10 360 } else
yading@10 361 /* Select short filter. */
yading@10 362 selected_signal = &delayed_signal[best_delay_frac-1][delayed_signal_offset];
yading@10 363
yading@10 364 /* Rescale selected signal to original value. */
yading@10 365 if (shift > 0)
yading@10 366 for (i = 0; i < subframe_size; i++)
yading@10 367 selected_signal[i] <<= shift;
yading@10 368 else
yading@10 369 for (i = 0; i < subframe_size; i++)
yading@10 370 selected_signal[i] >>= -shift;
yading@10 371
yading@10 372 /* necessary to avoid compiler warning */
yading@10 373 selected_signal_const = selected_signal;
yading@10 374 } // if(best_delay_frac)
yading@10 375 else
yading@10 376 selected_signal_const = residual + RES_PREV_DATA_SIZE - (best_delay_int + 1 - delayed_signal_offset);
yading@10 377 #ifdef G729_BITEXACT
yading@10 378 tmp = sh_gain_num - sh_gain_den;
yading@10 379 if (tmp > 0)
yading@10 380 gain_den >>= tmp;
yading@10 381 else
yading@10 382 gain_num >>= -tmp;
yading@10 383
yading@10 384 if (gain_num > gain_den)
yading@10 385 lt_filt_factor_a = MIN_LT_FILT_FACTOR_A;
yading@10 386 else {
yading@10 387 gain_num >>= 2;
yading@10 388 gain_den >>= 1;
yading@10 389 lt_filt_factor_a = (gain_den << 15) / (gain_den + gain_num);
yading@10 390 }
yading@10 391 #else
yading@10 392 L64_temp0 = ((int64_t)gain_num) << (sh_gain_num - 1);
yading@10 393 L64_temp1 = ((int64_t)gain_den) << sh_gain_den;
yading@10 394 lt_filt_factor_a = FFMAX((L64_temp1 << 15) / (L64_temp1 + L64_temp0), MIN_LT_FILT_FACTOR_A);
yading@10 395 #endif
yading@10 396
yading@10 397 /* Filter through selected filter. */
yading@10 398 lt_filt_factor_b = 32767 - lt_filt_factor_a + 1;
yading@10 399
yading@10 400 ff_acelp_weighted_vector_sum(residual_filt, residual + RES_PREV_DATA_SIZE,
yading@10 401 selected_signal_const,
yading@10 402 lt_filt_factor_a, lt_filt_factor_b,
yading@10 403 1<<14, 15, subframe_size);
yading@10 404
yading@10 405 // Long-term prediction gain is larger than 3dB.
yading@10 406 return 1;
yading@10 407 }
yading@10 408
yading@10 409 /**
yading@10 410 * \brief Calculate reflection coefficient for tilt compensation filter (4.2.3).
yading@10 411 * \param dsp initialized DSP context
yading@10 412 * \param lp_gn (3.12) coefficients of A(z/FORMANT_PP_FACTOR_NUM) filter
yading@10 413 * \param lp_gd (3.12) coefficients of A(z/FORMANT_PP_FACTOR_DEN) filter
yading@10 414 * \param speech speech to update
yading@10 415 * \param subframe_size size of subframe
yading@10 416 *
yading@10 417 * \return (3.12) reflection coefficient
yading@10 418 *
yading@10 419 * \remark The routine also calculates the gain term for the short-term
yading@10 420 * filter (gf) and multiplies the speech data by 1/gf.
yading@10 421 *
yading@10 422 * \note All members of lp_gn, except 10-19 must be equal to zero.
yading@10 423 */
yading@10 424 static int16_t get_tilt_comp(DSPContext *dsp, int16_t *lp_gn,
yading@10 425 const int16_t *lp_gd, int16_t* speech,
yading@10 426 int subframe_size)
yading@10 427 {
yading@10 428 int rh1,rh0; // (3.12)
yading@10 429 int temp;
yading@10 430 int i;
yading@10 431 int gain_term;
yading@10 432
yading@10 433 lp_gn[10] = 4096; //1.0 in (3.12)
yading@10 434
yading@10 435 /* Apply 1/A(z/FORMANT_PP_FACTOR_DEN) filter to hf. */
yading@10 436 ff_celp_lp_synthesis_filter(lp_gn + 11, lp_gd + 1, lp_gn + 11, 22, 10, 0, 0, 0x800);
yading@10 437 /* Now lp_gn (starting with 10) contains impulse response
yading@10 438 of A(z/FORMANT_PP_FACTOR_NUM)/A(z/FORMANT_PP_FACTOR_DEN) filter. */
yading@10 439
yading@10 440 rh0 = dsp->scalarproduct_int16(lp_gn + 10, lp_gn + 10, 20);
yading@10 441 rh1 = dsp->scalarproduct_int16(lp_gn + 10, lp_gn + 11, 20);
yading@10 442
yading@10 443 /* downscale to avoid overflow */
yading@10 444 temp = av_log2(rh0) - 14;
yading@10 445 if (temp > 0) {
yading@10 446 rh0 >>= temp;
yading@10 447 rh1 >>= temp;
yading@10 448 }
yading@10 449
yading@10 450 if (FFABS(rh1) > rh0 || !rh0)
yading@10 451 return 0;
yading@10 452
yading@10 453 gain_term = 0;
yading@10 454 for (i = 0; i < 20; i++)
yading@10 455 gain_term += FFABS(lp_gn[i + 10]);
yading@10 456 gain_term >>= 2; // (3.12) -> (5.10)
yading@10 457
yading@10 458 if (gain_term > 0x400) { // 1.0 in (5.10)
yading@10 459 temp = 0x2000000 / gain_term; // 1.0/gain_term in (0.15)
yading@10 460 for (i = 0; i < subframe_size; i++)
yading@10 461 speech[i] = (speech[i] * temp + 0x4000) >> 15;
yading@10 462 }
yading@10 463
yading@10 464 return -(rh1 << 15) / rh0;
yading@10 465 }
yading@10 466
yading@10 467 /**
yading@10 468 * \brief Apply tilt compensation filter (4.2.3).
yading@10 469 * \param res_pst [in/out] residual signal (partially filtered)
yading@10 470 * \param k1 (3.12) reflection coefficient
yading@10 471 * \param subframe_size size of subframe
yading@10 472 * \param ht_prev_data previous data for 4.2.3, equation 86
yading@10 473 *
yading@10 474 * \return new value for ht_prev_data
yading@10 475 */
yading@10 476 static int16_t apply_tilt_comp(int16_t* out, int16_t* res_pst, int refl_coeff,
yading@10 477 int subframe_size, int16_t ht_prev_data)
yading@10 478 {
yading@10 479 int tmp, tmp2;
yading@10 480 int i;
yading@10 481 int gt, ga;
yading@10 482 int fact, sh_fact;
yading@10 483
yading@10 484 if (refl_coeff > 0) {
yading@10 485 gt = (refl_coeff * G729_TILT_FACTOR_PLUS + 0x4000) >> 15;
yading@10 486 fact = 0x4000; // 0.5 in (0.15)
yading@10 487 sh_fact = 15;
yading@10 488 } else {
yading@10 489 gt = (refl_coeff * G729_TILT_FACTOR_MINUS + 0x4000) >> 15;
yading@10 490 fact = 0x800; // 0.5 in (3.12)
yading@10 491 sh_fact = 12;
yading@10 492 }
yading@10 493 ga = (fact << 15) / av_clip_int16(32768 - FFABS(gt));
yading@10 494 gt >>= 1;
yading@10 495
yading@10 496 /* Apply tilt compensation filter to signal. */
yading@10 497 tmp = res_pst[subframe_size - 1];
yading@10 498
yading@10 499 for (i = subframe_size - 1; i >= 1; i--) {
yading@10 500 tmp2 = (res_pst[i] << 15) + ((gt * res_pst[i-1]) << 1);
yading@10 501 tmp2 = (tmp2 + 0x4000) >> 15;
yading@10 502
yading@10 503 tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact;
yading@10 504 out[i] = tmp2;
yading@10 505 }
yading@10 506 tmp2 = (res_pst[0] << 15) + ((gt * ht_prev_data) << 1);
yading@10 507 tmp2 = (tmp2 + 0x4000) >> 15;
yading@10 508 tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact;
yading@10 509 out[0] = tmp2;
yading@10 510
yading@10 511 return tmp;
yading@10 512 }
yading@10 513
yading@10 514 void ff_g729_postfilter(DSPContext *dsp, int16_t* ht_prev_data, int* voicing,
yading@10 515 const int16_t *lp_filter_coeffs, int pitch_delay_int,
yading@10 516 int16_t* residual, int16_t* res_filter_data,
yading@10 517 int16_t* pos_filter_data, int16_t *speech, int subframe_size)
yading@10 518 {
yading@10 519 int16_t residual_filt_buf[SUBFRAME_SIZE+11];
yading@10 520 int16_t lp_gn[33]; // (3.12)
yading@10 521 int16_t lp_gd[11]; // (3.12)
yading@10 522 int tilt_comp_coeff;
yading@10 523 int i;
yading@10 524
yading@10 525 /* Zero-filling is necessary for tilt-compensation filter. */
yading@10 526 memset(lp_gn, 0, 33 * sizeof(int16_t));
yading@10 527
yading@10 528 /* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */
yading@10 529 for (i = 0; i < 10; i++)
yading@10 530 lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15;
yading@10 531
yading@10 532 /* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */
yading@10 533 for (i = 0; i < 10; i++)
yading@10 534 lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15;
yading@10 535
yading@10 536 /* residual signal calculation (one-half of short-term postfilter) */
yading@10 537 memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t));
yading@10 538 residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size);
yading@10 539 /* Save data to use it in the next subframe. */
yading@10 540 memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t));
yading@10 541
yading@10 542 /* long-term filter. If long-term prediction gain is larger than 3dB (returned value is
yading@10 543 nonzero) then declare current subframe as periodic. */
yading@10 544 *voicing = FFMAX(*voicing, long_term_filter(dsp, pitch_delay_int,
yading@10 545 residual, residual_filt_buf + 10,
yading@10 546 subframe_size));
yading@10 547
yading@10 548 /* shift residual for using in next subframe */
yading@10 549 memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t));
yading@10 550
yading@10 551 /* short-term filter tilt compensation */
yading@10 552 tilt_comp_coeff = get_tilt_comp(dsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size);
yading@10 553
yading@10 554 /* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */
yading@10 555 ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1,
yading@10 556 residual_filt_buf + 10,
yading@10 557 subframe_size, 10, 0, 0, 0x800);
yading@10 558 memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t));
yading@10 559
yading@10 560 *ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff,
yading@10 561 subframe_size, *ht_prev_data);
yading@10 562 }
yading@10 563
yading@10 564 /**
yading@10 565 * \brief Adaptive gain control (4.2.4)
yading@10 566 * \param gain_before gain of speech before applying postfilters
yading@10 567 * \param gain_after gain of speech after applying postfilters
yading@10 568 * \param speech [in/out] signal buffer
yading@10 569 * \param subframe_size length of subframe
yading@10 570 * \param gain_prev (3.12) previous value of gain coefficient
yading@10 571 *
yading@10 572 * \return (3.12) last value of gain coefficient
yading@10 573 */
yading@10 574 int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech,
yading@10 575 int subframe_size, int16_t gain_prev)
yading@10 576 {
yading@10 577 int gain; // (3.12)
yading@10 578 int n;
yading@10 579 int exp_before, exp_after;
yading@10 580
yading@10 581 if(!gain_after && gain_before)
yading@10 582 return 0;
yading@10 583
yading@10 584 if (gain_before) {
yading@10 585
yading@10 586 exp_before = 14 - av_log2(gain_before);
yading@10 587 gain_before = bidir_sal(gain_before, exp_before);
yading@10 588
yading@10 589 exp_after = 14 - av_log2(gain_after);
yading@10 590 gain_after = bidir_sal(gain_after, exp_after);
yading@10 591
yading@10 592 if (gain_before < gain_after) {
yading@10 593 gain = (gain_before << 15) / gain_after;
yading@10 594 gain = bidir_sal(gain, exp_after - exp_before - 1);
yading@10 595 } else {
yading@10 596 gain = ((gain_before - gain_after) << 14) / gain_after + 0x4000;
yading@10 597 gain = bidir_sal(gain, exp_after - exp_before);
yading@10 598 }
yading@10 599 gain = (gain * G729_AGC_FAC1 + 0x4000) >> 15; // gain * (1-0.9875)
yading@10 600 } else
yading@10 601 gain = 0;
yading@10 602
yading@10 603 for (n = 0; n < subframe_size; n++) {
yading@10 604 // gain_prev = gain + 0.9875 * gain_prev
yading@10 605 gain_prev = (G729_AGC_FACTOR * gain_prev + 0x4000) >> 15;
yading@10 606 gain_prev = av_clip_int16(gain + gain_prev);
yading@10 607 speech[n] = av_clip_int16((speech[n] * gain_prev + 0x2000) >> 14);
yading@10 608 }
yading@10 609 return gain_prev;
yading@10 610 }