yading@10
|
1 /*
|
yading@10
|
2 * G.729, G729 Annex D postfilter
|
yading@10
|
3 * Copyright (c) 2008 Vladimir Voroshilov
|
yading@10
|
4 *
|
yading@10
|
5 * This file is part of FFmpeg.
|
yading@10
|
6 *
|
yading@10
|
7 * FFmpeg is free software; you can redistribute it and/or
|
yading@10
|
8 * modify it under the terms of the GNU Lesser General Public
|
yading@10
|
9 * License as published by the Free Software Foundation; either
|
yading@10
|
10 * version 2.1 of the License, or (at your option) any later version.
|
yading@10
|
11 *
|
yading@10
|
12 * FFmpeg is distributed in the hope that it will be useful,
|
yading@10
|
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
yading@10
|
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
yading@10
|
15 * Lesser General Public License for more details.
|
yading@10
|
16 *
|
yading@10
|
17 * You should have received a copy of the GNU Lesser General Public
|
yading@10
|
18 * License along with FFmpeg; if not, write to the Free Software
|
yading@10
|
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
yading@10
|
20 */
|
yading@10
|
21 #include <inttypes.h>
|
yading@10
|
22 #include <limits.h>
|
yading@10
|
23
|
yading@10
|
24 #include "avcodec.h"
|
yading@10
|
25 #include "g729.h"
|
yading@10
|
26 #include "acelp_pitch_delay.h"
|
yading@10
|
27 #include "g729postfilter.h"
|
yading@10
|
28 #include "celp_math.h"
|
yading@10
|
29 #include "acelp_filters.h"
|
yading@10
|
30 #include "acelp_vectors.h"
|
yading@10
|
31 #include "celp_filters.h"
|
yading@10
|
32
|
yading@10
|
33 #define FRAC_BITS 15
|
yading@10
|
34 #include "mathops.h"
|
yading@10
|
35
|
yading@10
|
36 /**
|
yading@10
|
37 * short interpolation filter (of length 33, according to spec)
|
yading@10
|
38 * for computing signal with non-integer delay
|
yading@10
|
39 */
|
yading@10
|
40 static const int16_t ff_g729_interp_filt_short[(ANALYZED_FRAC_DELAYS+1)*SHORT_INT_FILT_LEN] = {
|
yading@10
|
41 0, 31650, 28469, 23705, 18050, 12266, 7041, 2873,
|
yading@10
|
42 0, -1597, -2147, -1992, -1492, -933, -484, -188,
|
yading@10
|
43 };
|
yading@10
|
44
|
yading@10
|
45 /**
|
yading@10
|
46 * long interpolation filter (of length 129, according to spec)
|
yading@10
|
47 * for computing signal with non-integer delay
|
yading@10
|
48 */
|
yading@10
|
49 static const int16_t ff_g729_interp_filt_long[(ANALYZED_FRAC_DELAYS+1)*LONG_INT_FILT_LEN] = {
|
yading@10
|
50 0, 31915, 29436, 25569, 20676, 15206, 9639, 4439,
|
yading@10
|
51 0, -3390, -5579, -6549, -6414, -5392, -3773, -1874,
|
yading@10
|
52 0, 1595, 2727, 3303, 3319, 2850, 2030, 1023,
|
yading@10
|
53 0, -887, -1527, -1860, -1876, -1614, -1150, -579,
|
yading@10
|
54 0, 501, 859, 1041, 1044, 892, 631, 315,
|
yading@10
|
55 0, -266, -453, -543, -538, -455, -317, -156,
|
yading@10
|
56 0, 130, 218, 258, 253, 212, 147, 72,
|
yading@10
|
57 0, -59, -101, -122, -123, -106, -77, -40,
|
yading@10
|
58 };
|
yading@10
|
59
|
yading@10
|
60 /**
|
yading@10
|
61 * formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1)
|
yading@10
|
62 */
|
yading@10
|
63 static const int16_t formant_pp_factor_num_pow[10]= {
|
yading@10
|
64 /* (0.15) */
|
yading@10
|
65 18022, 9912, 5451, 2998, 1649, 907, 499, 274, 151, 83
|
yading@10
|
66 };
|
yading@10
|
67
|
yading@10
|
68 /**
|
yading@10
|
69 * formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1)
|
yading@10
|
70 */
|
yading@10
|
71 static const int16_t formant_pp_factor_den_pow[10] = {
|
yading@10
|
72 /* (0.15) */
|
yading@10
|
73 22938, 16057, 11240, 7868, 5508, 3856, 2699, 1889, 1322, 925
|
yading@10
|
74 };
|
yading@10
|
75
|
yading@10
|
76 /**
|
yading@10
|
77 * \brief Residual signal calculation (4.2.1 if G.729)
|
yading@10
|
78 * \param out [out] output data filtered through A(z/FORMANT_PP_FACTOR_NUM)
|
yading@10
|
79 * \param filter_coeffs (3.12) A(z/FORMANT_PP_FACTOR_NUM) filter coefficients
|
yading@10
|
80 * \param in input speech data to process
|
yading@10
|
81 * \param subframe_size size of one subframe
|
yading@10
|
82 *
|
yading@10
|
83 * \note in buffer must contain 10 items of previous speech data before top of the buffer
|
yading@10
|
84 * \remark It is safe to pass the same buffer for input and output.
|
yading@10
|
85 */
|
yading@10
|
86 static void residual_filter(int16_t* out, const int16_t* filter_coeffs, const int16_t* in,
|
yading@10
|
87 int subframe_size)
|
yading@10
|
88 {
|
yading@10
|
89 int i, n;
|
yading@10
|
90
|
yading@10
|
91 for (n = subframe_size - 1; n >= 0; n--) {
|
yading@10
|
92 int sum = 0x800;
|
yading@10
|
93 for (i = 0; i < 10; i++)
|
yading@10
|
94 sum += filter_coeffs[i] * in[n - i - 1];
|
yading@10
|
95
|
yading@10
|
96 out[n] = in[n] + (sum >> 12);
|
yading@10
|
97 }
|
yading@10
|
98 }
|
yading@10
|
99
|
yading@10
|
100 /**
|
yading@10
|
101 * \brief long-term postfilter (4.2.1)
|
yading@10
|
102 * \param dsp initialized DSP context
|
yading@10
|
103 * \param pitch_delay_int integer part of the pitch delay in the first subframe
|
yading@10
|
104 * \param residual filtering input data
|
yading@10
|
105 * \param residual_filt [out] speech signal with applied A(z/FORMANT_PP_FACTOR_NUM) filter
|
yading@10
|
106 * \param subframe_size size of subframe
|
yading@10
|
107 *
|
yading@10
|
108 * \return 0 if long-term prediction gain is less than 3dB, 1 - otherwise
|
yading@10
|
109 */
|
yading@10
|
110 static int16_t long_term_filter(DSPContext *dsp, int pitch_delay_int,
|
yading@10
|
111 const int16_t* residual, int16_t *residual_filt,
|
yading@10
|
112 int subframe_size)
|
yading@10
|
113 {
|
yading@10
|
114 int i, k, tmp, tmp2;
|
yading@10
|
115 int sum;
|
yading@10
|
116 int L_temp0;
|
yading@10
|
117 int L_temp1;
|
yading@10
|
118 int64_t L64_temp0;
|
yading@10
|
119 int64_t L64_temp1;
|
yading@10
|
120 int16_t shift;
|
yading@10
|
121 int corr_int_num, corr_int_den;
|
yading@10
|
122
|
yading@10
|
123 int ener;
|
yading@10
|
124 int16_t sh_ener;
|
yading@10
|
125
|
yading@10
|
126 int16_t gain_num,gain_den; //selected signal's gain numerator and denominator
|
yading@10
|
127 int16_t sh_gain_num, sh_gain_den;
|
yading@10
|
128 int gain_num_square;
|
yading@10
|
129
|
yading@10
|
130 int16_t gain_long_num,gain_long_den; //filtered through long interpolation filter signal's gain numerator and denominator
|
yading@10
|
131 int16_t sh_gain_long_num, sh_gain_long_den;
|
yading@10
|
132
|
yading@10
|
133 int16_t best_delay_int, best_delay_frac;
|
yading@10
|
134
|
yading@10
|
135 int16_t delayed_signal_offset;
|
yading@10
|
136 int lt_filt_factor_a, lt_filt_factor_b;
|
yading@10
|
137
|
yading@10
|
138 int16_t * selected_signal;
|
yading@10
|
139 const int16_t * selected_signal_const; //Necessary to avoid compiler warning
|
yading@10
|
140
|
yading@10
|
141 int16_t sig_scaled[SUBFRAME_SIZE + RES_PREV_DATA_SIZE];
|
yading@10
|
142 int16_t delayed_signal[ANALYZED_FRAC_DELAYS][SUBFRAME_SIZE+1];
|
yading@10
|
143 int corr_den[ANALYZED_FRAC_DELAYS][2];
|
yading@10
|
144
|
yading@10
|
145 tmp = 0;
|
yading@10
|
146 for(i=0; i<subframe_size + RES_PREV_DATA_SIZE; i++)
|
yading@10
|
147 tmp |= FFABS(residual[i]);
|
yading@10
|
148
|
yading@10
|
149 if(!tmp)
|
yading@10
|
150 shift = 3;
|
yading@10
|
151 else
|
yading@10
|
152 shift = av_log2(tmp) - 11;
|
yading@10
|
153
|
yading@10
|
154 if (shift > 0)
|
yading@10
|
155 for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
|
yading@10
|
156 sig_scaled[i] = residual[i] >> shift;
|
yading@10
|
157 else
|
yading@10
|
158 for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
|
yading@10
|
159 sig_scaled[i] = residual[i] << -shift;
|
yading@10
|
160
|
yading@10
|
161 /* Start of best delay searching code */
|
yading@10
|
162 gain_num = 0;
|
yading@10
|
163
|
yading@10
|
164 ener = dsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
|
yading@10
|
165 sig_scaled + RES_PREV_DATA_SIZE,
|
yading@10
|
166 subframe_size);
|
yading@10
|
167 if (ener) {
|
yading@10
|
168 sh_ener = FFMAX(av_log2(ener) - 14, 0);
|
yading@10
|
169 ener >>= sh_ener;
|
yading@10
|
170 /* Search for best pitch delay.
|
yading@10
|
171
|
yading@10
|
172 sum{ r(n) * r(k,n) ] }^2
|
yading@10
|
173 R'(k)^2 := -------------------------
|
yading@10
|
174 sum{ r(k,n) * r(k,n) }
|
yading@10
|
175
|
yading@10
|
176
|
yading@10
|
177 R(T) := sum{ r(n) * r(n-T) ] }
|
yading@10
|
178
|
yading@10
|
179
|
yading@10
|
180 where
|
yading@10
|
181 r(n-T) is integer delayed signal with delay T
|
yading@10
|
182 r(k,n) is non-integer delayed signal with integer delay best_delay
|
yading@10
|
183 and fractional delay k */
|
yading@10
|
184
|
yading@10
|
185 /* Find integer delay best_delay which maximizes correlation R(T).
|
yading@10
|
186
|
yading@10
|
187 This is also equals to numerator of R'(0),
|
yading@10
|
188 since the fine search (second step) is done with 1/8
|
yading@10
|
189 precision around best_delay. */
|
yading@10
|
190 corr_int_num = 0;
|
yading@10
|
191 best_delay_int = pitch_delay_int - 1;
|
yading@10
|
192 for (i = pitch_delay_int - 1; i <= pitch_delay_int + 1; i++) {
|
yading@10
|
193 sum = dsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
|
yading@10
|
194 sig_scaled + RES_PREV_DATA_SIZE - i,
|
yading@10
|
195 subframe_size);
|
yading@10
|
196 if (sum > corr_int_num) {
|
yading@10
|
197 corr_int_num = sum;
|
yading@10
|
198 best_delay_int = i;
|
yading@10
|
199 }
|
yading@10
|
200 }
|
yading@10
|
201 if (corr_int_num) {
|
yading@10
|
202 /* Compute denominator of pseudo-normalized correlation R'(0). */
|
yading@10
|
203 corr_int_den = dsp->scalarproduct_int16(sig_scaled - best_delay_int + RES_PREV_DATA_SIZE,
|
yading@10
|
204 sig_scaled - best_delay_int + RES_PREV_DATA_SIZE,
|
yading@10
|
205 subframe_size);
|
yading@10
|
206
|
yading@10
|
207 /* Compute signals with non-integer delay k (with 1/8 precision),
|
yading@10
|
208 where k is in [0;6] range.
|
yading@10
|
209 Entire delay is qual to best_delay+(k+1)/8
|
yading@10
|
210 This is archieved by applying an interpolation filter of
|
yading@10
|
211 legth 33 to source signal. */
|
yading@10
|
212 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
|
yading@10
|
213 ff_acelp_interpolate(&delayed_signal[k][0],
|
yading@10
|
214 &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int],
|
yading@10
|
215 ff_g729_interp_filt_short,
|
yading@10
|
216 ANALYZED_FRAC_DELAYS+1,
|
yading@10
|
217 8 - k - 1,
|
yading@10
|
218 SHORT_INT_FILT_LEN,
|
yading@10
|
219 subframe_size + 1);
|
yading@10
|
220 }
|
yading@10
|
221
|
yading@10
|
222 /* Compute denominator of pseudo-normalized correlation R'(k).
|
yading@10
|
223
|
yading@10
|
224 corr_den[k][0] is square root of R'(k) denominator, for int(T) == int(T0)
|
yading@10
|
225 corr_den[k][1] is square root of R'(k) denominator, for int(T) == int(T0)+1
|
yading@10
|
226
|
yading@10
|
227 Also compute maximum value of above denominators over all k. */
|
yading@10
|
228 tmp = corr_int_den;
|
yading@10
|
229 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
|
yading@10
|
230 sum = dsp->scalarproduct_int16(&delayed_signal[k][1],
|
yading@10
|
231 &delayed_signal[k][1],
|
yading@10
|
232 subframe_size - 1);
|
yading@10
|
233 corr_den[k][0] = sum + delayed_signal[k][0 ] * delayed_signal[k][0 ];
|
yading@10
|
234 corr_den[k][1] = sum + delayed_signal[k][subframe_size] * delayed_signal[k][subframe_size];
|
yading@10
|
235
|
yading@10
|
236 tmp = FFMAX3(tmp, corr_den[k][0], corr_den[k][1]);
|
yading@10
|
237 }
|
yading@10
|
238
|
yading@10
|
239 sh_gain_den = av_log2(tmp) - 14;
|
yading@10
|
240 if (sh_gain_den >= 0) {
|
yading@10
|
241
|
yading@10
|
242 sh_gain_num = FFMAX(sh_gain_den, sh_ener);
|
yading@10
|
243 /* Loop through all k and find delay that maximizes
|
yading@10
|
244 R'(k) correlation.
|
yading@10
|
245 Search is done in [int(T0)-1; intT(0)+1] range
|
yading@10
|
246 with 1/8 precision. */
|
yading@10
|
247 delayed_signal_offset = 1;
|
yading@10
|
248 best_delay_frac = 0;
|
yading@10
|
249 gain_den = corr_int_den >> sh_gain_den;
|
yading@10
|
250 gain_num = corr_int_num >> sh_gain_num;
|
yading@10
|
251 gain_num_square = gain_num * gain_num;
|
yading@10
|
252 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
|
yading@10
|
253 for (i = 0; i < 2; i++) {
|
yading@10
|
254 int16_t gain_num_short, gain_den_short;
|
yading@10
|
255 int gain_num_short_square;
|
yading@10
|
256 /* Compute numerator of pseudo-normalized
|
yading@10
|
257 correlation R'(k). */
|
yading@10
|
258 sum = dsp->scalarproduct_int16(&delayed_signal[k][i],
|
yading@10
|
259 sig_scaled + RES_PREV_DATA_SIZE,
|
yading@10
|
260 subframe_size);
|
yading@10
|
261 gain_num_short = FFMAX(sum >> sh_gain_num, 0);
|
yading@10
|
262
|
yading@10
|
263 /*
|
yading@10
|
264 gain_num_short_square gain_num_square
|
yading@10
|
265 R'(T)^2 = -----------------------, max R'(T)^2= --------------
|
yading@10
|
266 den gain_den
|
yading@10
|
267 */
|
yading@10
|
268 gain_num_short_square = gain_num_short * gain_num_short;
|
yading@10
|
269 gain_den_short = corr_den[k][i] >> sh_gain_den;
|
yading@10
|
270
|
yading@10
|
271 tmp = MULL(gain_num_short_square, gain_den, FRAC_BITS);
|
yading@10
|
272 tmp2 = MULL(gain_num_square, gain_den_short, FRAC_BITS);
|
yading@10
|
273
|
yading@10
|
274 // R'(T)^2 > max R'(T)^2
|
yading@10
|
275 if (tmp > tmp2) {
|
yading@10
|
276 gain_num = gain_num_short;
|
yading@10
|
277 gain_den = gain_den_short;
|
yading@10
|
278 gain_num_square = gain_num_short_square;
|
yading@10
|
279 delayed_signal_offset = i;
|
yading@10
|
280 best_delay_frac = k + 1;
|
yading@10
|
281 }
|
yading@10
|
282 }
|
yading@10
|
283 }
|
yading@10
|
284
|
yading@10
|
285 /*
|
yading@10
|
286 R'(T)^2
|
yading@10
|
287 2 * --------- < 1
|
yading@10
|
288 R(0)
|
yading@10
|
289 */
|
yading@10
|
290 L64_temp0 = (int64_t)gain_num_square << ((sh_gain_num << 1) + 1);
|
yading@10
|
291 L64_temp1 = ((int64_t)gain_den * ener) << (sh_gain_den + sh_ener);
|
yading@10
|
292 if (L64_temp0 < L64_temp1)
|
yading@10
|
293 gain_num = 0;
|
yading@10
|
294 } // if(sh_gain_den >= 0)
|
yading@10
|
295 } // if(corr_int_num)
|
yading@10
|
296 } // if(ener)
|
yading@10
|
297 /* End of best delay searching code */
|
yading@10
|
298
|
yading@10
|
299 if (!gain_num) {
|
yading@10
|
300 memcpy(residual_filt, residual + RES_PREV_DATA_SIZE, subframe_size * sizeof(int16_t));
|
yading@10
|
301
|
yading@10
|
302 /* Long-term prediction gain is less than 3dB. Long-term postfilter is disabled. */
|
yading@10
|
303 return 0;
|
yading@10
|
304 }
|
yading@10
|
305 if (best_delay_frac) {
|
yading@10
|
306 /* Recompute delayed signal with an interpolation filter of length 129. */
|
yading@10
|
307 ff_acelp_interpolate(residual_filt,
|
yading@10
|
308 &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int + delayed_signal_offset],
|
yading@10
|
309 ff_g729_interp_filt_long,
|
yading@10
|
310 ANALYZED_FRAC_DELAYS + 1,
|
yading@10
|
311 8 - best_delay_frac,
|
yading@10
|
312 LONG_INT_FILT_LEN,
|
yading@10
|
313 subframe_size + 1);
|
yading@10
|
314 /* Compute R'(k) correlation's numerator. */
|
yading@10
|
315 sum = dsp->scalarproduct_int16(residual_filt,
|
yading@10
|
316 sig_scaled + RES_PREV_DATA_SIZE,
|
yading@10
|
317 subframe_size);
|
yading@10
|
318
|
yading@10
|
319 if (sum < 0) {
|
yading@10
|
320 gain_long_num = 0;
|
yading@10
|
321 sh_gain_long_num = 0;
|
yading@10
|
322 } else {
|
yading@10
|
323 tmp = FFMAX(av_log2(sum) - 14, 0);
|
yading@10
|
324 sum >>= tmp;
|
yading@10
|
325 gain_long_num = sum;
|
yading@10
|
326 sh_gain_long_num = tmp;
|
yading@10
|
327 }
|
yading@10
|
328
|
yading@10
|
329 /* Compute R'(k) correlation's denominator. */
|
yading@10
|
330 sum = dsp->scalarproduct_int16(residual_filt, residual_filt, subframe_size);
|
yading@10
|
331
|
yading@10
|
332 tmp = FFMAX(av_log2(sum) - 14, 0);
|
yading@10
|
333 sum >>= tmp;
|
yading@10
|
334 gain_long_den = sum;
|
yading@10
|
335 sh_gain_long_den = tmp;
|
yading@10
|
336
|
yading@10
|
337 /* Select between original and delayed signal.
|
yading@10
|
338 Delayed signal will be selected if it increases R'(k)
|
yading@10
|
339 correlation. */
|
yading@10
|
340 L_temp0 = gain_num * gain_num;
|
yading@10
|
341 L_temp0 = MULL(L_temp0, gain_long_den, FRAC_BITS);
|
yading@10
|
342
|
yading@10
|
343 L_temp1 = gain_long_num * gain_long_num;
|
yading@10
|
344 L_temp1 = MULL(L_temp1, gain_den, FRAC_BITS);
|
yading@10
|
345
|
yading@10
|
346 tmp = ((sh_gain_long_num - sh_gain_num) << 1) - (sh_gain_long_den - sh_gain_den);
|
yading@10
|
347 if (tmp > 0)
|
yading@10
|
348 L_temp0 >>= tmp;
|
yading@10
|
349 else
|
yading@10
|
350 L_temp1 >>= -tmp;
|
yading@10
|
351
|
yading@10
|
352 /* Check if longer filter increases the values of R'(k). */
|
yading@10
|
353 if (L_temp1 > L_temp0) {
|
yading@10
|
354 /* Select long filter. */
|
yading@10
|
355 selected_signal = residual_filt;
|
yading@10
|
356 gain_num = gain_long_num;
|
yading@10
|
357 gain_den = gain_long_den;
|
yading@10
|
358 sh_gain_num = sh_gain_long_num;
|
yading@10
|
359 sh_gain_den = sh_gain_long_den;
|
yading@10
|
360 } else
|
yading@10
|
361 /* Select short filter. */
|
yading@10
|
362 selected_signal = &delayed_signal[best_delay_frac-1][delayed_signal_offset];
|
yading@10
|
363
|
yading@10
|
364 /* Rescale selected signal to original value. */
|
yading@10
|
365 if (shift > 0)
|
yading@10
|
366 for (i = 0; i < subframe_size; i++)
|
yading@10
|
367 selected_signal[i] <<= shift;
|
yading@10
|
368 else
|
yading@10
|
369 for (i = 0; i < subframe_size; i++)
|
yading@10
|
370 selected_signal[i] >>= -shift;
|
yading@10
|
371
|
yading@10
|
372 /* necessary to avoid compiler warning */
|
yading@10
|
373 selected_signal_const = selected_signal;
|
yading@10
|
374 } // if(best_delay_frac)
|
yading@10
|
375 else
|
yading@10
|
376 selected_signal_const = residual + RES_PREV_DATA_SIZE - (best_delay_int + 1 - delayed_signal_offset);
|
yading@10
|
377 #ifdef G729_BITEXACT
|
yading@10
|
378 tmp = sh_gain_num - sh_gain_den;
|
yading@10
|
379 if (tmp > 0)
|
yading@10
|
380 gain_den >>= tmp;
|
yading@10
|
381 else
|
yading@10
|
382 gain_num >>= -tmp;
|
yading@10
|
383
|
yading@10
|
384 if (gain_num > gain_den)
|
yading@10
|
385 lt_filt_factor_a = MIN_LT_FILT_FACTOR_A;
|
yading@10
|
386 else {
|
yading@10
|
387 gain_num >>= 2;
|
yading@10
|
388 gain_den >>= 1;
|
yading@10
|
389 lt_filt_factor_a = (gain_den << 15) / (gain_den + gain_num);
|
yading@10
|
390 }
|
yading@10
|
391 #else
|
yading@10
|
392 L64_temp0 = ((int64_t)gain_num) << (sh_gain_num - 1);
|
yading@10
|
393 L64_temp1 = ((int64_t)gain_den) << sh_gain_den;
|
yading@10
|
394 lt_filt_factor_a = FFMAX((L64_temp1 << 15) / (L64_temp1 + L64_temp0), MIN_LT_FILT_FACTOR_A);
|
yading@10
|
395 #endif
|
yading@10
|
396
|
yading@10
|
397 /* Filter through selected filter. */
|
yading@10
|
398 lt_filt_factor_b = 32767 - lt_filt_factor_a + 1;
|
yading@10
|
399
|
yading@10
|
400 ff_acelp_weighted_vector_sum(residual_filt, residual + RES_PREV_DATA_SIZE,
|
yading@10
|
401 selected_signal_const,
|
yading@10
|
402 lt_filt_factor_a, lt_filt_factor_b,
|
yading@10
|
403 1<<14, 15, subframe_size);
|
yading@10
|
404
|
yading@10
|
405 // Long-term prediction gain is larger than 3dB.
|
yading@10
|
406 return 1;
|
yading@10
|
407 }
|
yading@10
|
408
|
yading@10
|
409 /**
|
yading@10
|
410 * \brief Calculate reflection coefficient for tilt compensation filter (4.2.3).
|
yading@10
|
411 * \param dsp initialized DSP context
|
yading@10
|
412 * \param lp_gn (3.12) coefficients of A(z/FORMANT_PP_FACTOR_NUM) filter
|
yading@10
|
413 * \param lp_gd (3.12) coefficients of A(z/FORMANT_PP_FACTOR_DEN) filter
|
yading@10
|
414 * \param speech speech to update
|
yading@10
|
415 * \param subframe_size size of subframe
|
yading@10
|
416 *
|
yading@10
|
417 * \return (3.12) reflection coefficient
|
yading@10
|
418 *
|
yading@10
|
419 * \remark The routine also calculates the gain term for the short-term
|
yading@10
|
420 * filter (gf) and multiplies the speech data by 1/gf.
|
yading@10
|
421 *
|
yading@10
|
422 * \note All members of lp_gn, except 10-19 must be equal to zero.
|
yading@10
|
423 */
|
yading@10
|
424 static int16_t get_tilt_comp(DSPContext *dsp, int16_t *lp_gn,
|
yading@10
|
425 const int16_t *lp_gd, int16_t* speech,
|
yading@10
|
426 int subframe_size)
|
yading@10
|
427 {
|
yading@10
|
428 int rh1,rh0; // (3.12)
|
yading@10
|
429 int temp;
|
yading@10
|
430 int i;
|
yading@10
|
431 int gain_term;
|
yading@10
|
432
|
yading@10
|
433 lp_gn[10] = 4096; //1.0 in (3.12)
|
yading@10
|
434
|
yading@10
|
435 /* Apply 1/A(z/FORMANT_PP_FACTOR_DEN) filter to hf. */
|
yading@10
|
436 ff_celp_lp_synthesis_filter(lp_gn + 11, lp_gd + 1, lp_gn + 11, 22, 10, 0, 0, 0x800);
|
yading@10
|
437 /* Now lp_gn (starting with 10) contains impulse response
|
yading@10
|
438 of A(z/FORMANT_PP_FACTOR_NUM)/A(z/FORMANT_PP_FACTOR_DEN) filter. */
|
yading@10
|
439
|
yading@10
|
440 rh0 = dsp->scalarproduct_int16(lp_gn + 10, lp_gn + 10, 20);
|
yading@10
|
441 rh1 = dsp->scalarproduct_int16(lp_gn + 10, lp_gn + 11, 20);
|
yading@10
|
442
|
yading@10
|
443 /* downscale to avoid overflow */
|
yading@10
|
444 temp = av_log2(rh0) - 14;
|
yading@10
|
445 if (temp > 0) {
|
yading@10
|
446 rh0 >>= temp;
|
yading@10
|
447 rh1 >>= temp;
|
yading@10
|
448 }
|
yading@10
|
449
|
yading@10
|
450 if (FFABS(rh1) > rh0 || !rh0)
|
yading@10
|
451 return 0;
|
yading@10
|
452
|
yading@10
|
453 gain_term = 0;
|
yading@10
|
454 for (i = 0; i < 20; i++)
|
yading@10
|
455 gain_term += FFABS(lp_gn[i + 10]);
|
yading@10
|
456 gain_term >>= 2; // (3.12) -> (5.10)
|
yading@10
|
457
|
yading@10
|
458 if (gain_term > 0x400) { // 1.0 in (5.10)
|
yading@10
|
459 temp = 0x2000000 / gain_term; // 1.0/gain_term in (0.15)
|
yading@10
|
460 for (i = 0; i < subframe_size; i++)
|
yading@10
|
461 speech[i] = (speech[i] * temp + 0x4000) >> 15;
|
yading@10
|
462 }
|
yading@10
|
463
|
yading@10
|
464 return -(rh1 << 15) / rh0;
|
yading@10
|
465 }
|
yading@10
|
466
|
yading@10
|
467 /**
|
yading@10
|
468 * \brief Apply tilt compensation filter (4.2.3).
|
yading@10
|
469 * \param res_pst [in/out] residual signal (partially filtered)
|
yading@10
|
470 * \param k1 (3.12) reflection coefficient
|
yading@10
|
471 * \param subframe_size size of subframe
|
yading@10
|
472 * \param ht_prev_data previous data for 4.2.3, equation 86
|
yading@10
|
473 *
|
yading@10
|
474 * \return new value for ht_prev_data
|
yading@10
|
475 */
|
yading@10
|
476 static int16_t apply_tilt_comp(int16_t* out, int16_t* res_pst, int refl_coeff,
|
yading@10
|
477 int subframe_size, int16_t ht_prev_data)
|
yading@10
|
478 {
|
yading@10
|
479 int tmp, tmp2;
|
yading@10
|
480 int i;
|
yading@10
|
481 int gt, ga;
|
yading@10
|
482 int fact, sh_fact;
|
yading@10
|
483
|
yading@10
|
484 if (refl_coeff > 0) {
|
yading@10
|
485 gt = (refl_coeff * G729_TILT_FACTOR_PLUS + 0x4000) >> 15;
|
yading@10
|
486 fact = 0x4000; // 0.5 in (0.15)
|
yading@10
|
487 sh_fact = 15;
|
yading@10
|
488 } else {
|
yading@10
|
489 gt = (refl_coeff * G729_TILT_FACTOR_MINUS + 0x4000) >> 15;
|
yading@10
|
490 fact = 0x800; // 0.5 in (3.12)
|
yading@10
|
491 sh_fact = 12;
|
yading@10
|
492 }
|
yading@10
|
493 ga = (fact << 15) / av_clip_int16(32768 - FFABS(gt));
|
yading@10
|
494 gt >>= 1;
|
yading@10
|
495
|
yading@10
|
496 /* Apply tilt compensation filter to signal. */
|
yading@10
|
497 tmp = res_pst[subframe_size - 1];
|
yading@10
|
498
|
yading@10
|
499 for (i = subframe_size - 1; i >= 1; i--) {
|
yading@10
|
500 tmp2 = (res_pst[i] << 15) + ((gt * res_pst[i-1]) << 1);
|
yading@10
|
501 tmp2 = (tmp2 + 0x4000) >> 15;
|
yading@10
|
502
|
yading@10
|
503 tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact;
|
yading@10
|
504 out[i] = tmp2;
|
yading@10
|
505 }
|
yading@10
|
506 tmp2 = (res_pst[0] << 15) + ((gt * ht_prev_data) << 1);
|
yading@10
|
507 tmp2 = (tmp2 + 0x4000) >> 15;
|
yading@10
|
508 tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact;
|
yading@10
|
509 out[0] = tmp2;
|
yading@10
|
510
|
yading@10
|
511 return tmp;
|
yading@10
|
512 }
|
yading@10
|
513
|
yading@10
|
514 void ff_g729_postfilter(DSPContext *dsp, int16_t* ht_prev_data, int* voicing,
|
yading@10
|
515 const int16_t *lp_filter_coeffs, int pitch_delay_int,
|
yading@10
|
516 int16_t* residual, int16_t* res_filter_data,
|
yading@10
|
517 int16_t* pos_filter_data, int16_t *speech, int subframe_size)
|
yading@10
|
518 {
|
yading@10
|
519 int16_t residual_filt_buf[SUBFRAME_SIZE+11];
|
yading@10
|
520 int16_t lp_gn[33]; // (3.12)
|
yading@10
|
521 int16_t lp_gd[11]; // (3.12)
|
yading@10
|
522 int tilt_comp_coeff;
|
yading@10
|
523 int i;
|
yading@10
|
524
|
yading@10
|
525 /* Zero-filling is necessary for tilt-compensation filter. */
|
yading@10
|
526 memset(lp_gn, 0, 33 * sizeof(int16_t));
|
yading@10
|
527
|
yading@10
|
528 /* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */
|
yading@10
|
529 for (i = 0; i < 10; i++)
|
yading@10
|
530 lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15;
|
yading@10
|
531
|
yading@10
|
532 /* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */
|
yading@10
|
533 for (i = 0; i < 10; i++)
|
yading@10
|
534 lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15;
|
yading@10
|
535
|
yading@10
|
536 /* residual signal calculation (one-half of short-term postfilter) */
|
yading@10
|
537 memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t));
|
yading@10
|
538 residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size);
|
yading@10
|
539 /* Save data to use it in the next subframe. */
|
yading@10
|
540 memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t));
|
yading@10
|
541
|
yading@10
|
542 /* long-term filter. If long-term prediction gain is larger than 3dB (returned value is
|
yading@10
|
543 nonzero) then declare current subframe as periodic. */
|
yading@10
|
544 *voicing = FFMAX(*voicing, long_term_filter(dsp, pitch_delay_int,
|
yading@10
|
545 residual, residual_filt_buf + 10,
|
yading@10
|
546 subframe_size));
|
yading@10
|
547
|
yading@10
|
548 /* shift residual for using in next subframe */
|
yading@10
|
549 memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t));
|
yading@10
|
550
|
yading@10
|
551 /* short-term filter tilt compensation */
|
yading@10
|
552 tilt_comp_coeff = get_tilt_comp(dsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size);
|
yading@10
|
553
|
yading@10
|
554 /* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */
|
yading@10
|
555 ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1,
|
yading@10
|
556 residual_filt_buf + 10,
|
yading@10
|
557 subframe_size, 10, 0, 0, 0x800);
|
yading@10
|
558 memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t));
|
yading@10
|
559
|
yading@10
|
560 *ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff,
|
yading@10
|
561 subframe_size, *ht_prev_data);
|
yading@10
|
562 }
|
yading@10
|
563
|
yading@10
|
564 /**
|
yading@10
|
565 * \brief Adaptive gain control (4.2.4)
|
yading@10
|
566 * \param gain_before gain of speech before applying postfilters
|
yading@10
|
567 * \param gain_after gain of speech after applying postfilters
|
yading@10
|
568 * \param speech [in/out] signal buffer
|
yading@10
|
569 * \param subframe_size length of subframe
|
yading@10
|
570 * \param gain_prev (3.12) previous value of gain coefficient
|
yading@10
|
571 *
|
yading@10
|
572 * \return (3.12) last value of gain coefficient
|
yading@10
|
573 */
|
yading@10
|
574 int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech,
|
yading@10
|
575 int subframe_size, int16_t gain_prev)
|
yading@10
|
576 {
|
yading@10
|
577 int gain; // (3.12)
|
yading@10
|
578 int n;
|
yading@10
|
579 int exp_before, exp_after;
|
yading@10
|
580
|
yading@10
|
581 if(!gain_after && gain_before)
|
yading@10
|
582 return 0;
|
yading@10
|
583
|
yading@10
|
584 if (gain_before) {
|
yading@10
|
585
|
yading@10
|
586 exp_before = 14 - av_log2(gain_before);
|
yading@10
|
587 gain_before = bidir_sal(gain_before, exp_before);
|
yading@10
|
588
|
yading@10
|
589 exp_after = 14 - av_log2(gain_after);
|
yading@10
|
590 gain_after = bidir_sal(gain_after, exp_after);
|
yading@10
|
591
|
yading@10
|
592 if (gain_before < gain_after) {
|
yading@10
|
593 gain = (gain_before << 15) / gain_after;
|
yading@10
|
594 gain = bidir_sal(gain, exp_after - exp_before - 1);
|
yading@10
|
595 } else {
|
yading@10
|
596 gain = ((gain_before - gain_after) << 14) / gain_after + 0x4000;
|
yading@10
|
597 gain = bidir_sal(gain, exp_after - exp_before);
|
yading@10
|
598 }
|
yading@10
|
599 gain = (gain * G729_AGC_FAC1 + 0x4000) >> 15; // gain * (1-0.9875)
|
yading@10
|
600 } else
|
yading@10
|
601 gain = 0;
|
yading@10
|
602
|
yading@10
|
603 for (n = 0; n < subframe_size; n++) {
|
yading@10
|
604 // gain_prev = gain + 0.9875 * gain_prev
|
yading@10
|
605 gain_prev = (G729_AGC_FACTOR * gain_prev + 0x4000) >> 15;
|
yading@10
|
606 gain_prev = av_clip_int16(gain + gain_prev);
|
yading@10
|
607 speech[n] = av_clip_int16((speech[n] * gain_prev + 0x2000) >> 14);
|
yading@10
|
608 }
|
yading@10
|
609 return gain_prev;
|
yading@10
|
610 }
|