yading@10: /* yading@10: * G.729, G729 Annex D postfilter yading@10: * Copyright (c) 2008 Vladimir Voroshilov yading@10: * yading@10: * This file is part of FFmpeg. yading@10: * yading@10: * FFmpeg is free software; you can redistribute it and/or yading@10: * modify it under the terms of the GNU Lesser General Public yading@10: * License as published by the Free Software Foundation; either yading@10: * version 2.1 of the License, or (at your option) any later version. yading@10: * yading@10: * FFmpeg is distributed in the hope that it will be useful, yading@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of yading@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU yading@10: * Lesser General Public License for more details. yading@10: * yading@10: * You should have received a copy of the GNU Lesser General Public yading@10: * License along with FFmpeg; if not, write to the Free Software yading@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA yading@10: */ yading@10: #include yading@10: #include yading@10: yading@10: #include "avcodec.h" yading@10: #include "g729.h" yading@10: #include "acelp_pitch_delay.h" yading@10: #include "g729postfilter.h" yading@10: #include "celp_math.h" yading@10: #include "acelp_filters.h" yading@10: #include "acelp_vectors.h" yading@10: #include "celp_filters.h" yading@10: yading@10: #define FRAC_BITS 15 yading@10: #include "mathops.h" yading@10: yading@10: /** yading@10: * short interpolation filter (of length 33, according to spec) yading@10: * for computing signal with non-integer delay yading@10: */ yading@10: static const int16_t ff_g729_interp_filt_short[(ANALYZED_FRAC_DELAYS+1)*SHORT_INT_FILT_LEN] = { yading@10: 0, 31650, 28469, 23705, 18050, 12266, 7041, 2873, yading@10: 0, -1597, -2147, -1992, -1492, -933, -484, -188, yading@10: }; yading@10: yading@10: /** yading@10: * long interpolation filter (of length 129, according to spec) yading@10: * for computing signal with non-integer delay yading@10: */ yading@10: static const int16_t ff_g729_interp_filt_long[(ANALYZED_FRAC_DELAYS+1)*LONG_INT_FILT_LEN] = { yading@10: 0, 31915, 29436, 25569, 20676, 15206, 9639, 4439, yading@10: 0, -3390, -5579, -6549, -6414, -5392, -3773, -1874, yading@10: 0, 1595, 2727, 3303, 3319, 2850, 2030, 1023, yading@10: 0, -887, -1527, -1860, -1876, -1614, -1150, -579, yading@10: 0, 501, 859, 1041, 1044, 892, 631, 315, yading@10: 0, -266, -453, -543, -538, -455, -317, -156, yading@10: 0, 130, 218, 258, 253, 212, 147, 72, yading@10: 0, -59, -101, -122, -123, -106, -77, -40, yading@10: }; yading@10: yading@10: /** yading@10: * formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1) yading@10: */ yading@10: static const int16_t formant_pp_factor_num_pow[10]= { yading@10: /* (0.15) */ yading@10: 18022, 9912, 5451, 2998, 1649, 907, 499, 274, 151, 83 yading@10: }; yading@10: yading@10: /** yading@10: * formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1) yading@10: */ yading@10: static const int16_t formant_pp_factor_den_pow[10] = { yading@10: /* (0.15) */ yading@10: 22938, 16057, 11240, 7868, 5508, 3856, 2699, 1889, 1322, 925 yading@10: }; yading@10: yading@10: /** yading@10: * \brief Residual signal calculation (4.2.1 if G.729) yading@10: * \param out [out] output data filtered through A(z/FORMANT_PP_FACTOR_NUM) yading@10: * \param filter_coeffs (3.12) A(z/FORMANT_PP_FACTOR_NUM) filter coefficients yading@10: * \param in input speech data to process yading@10: * \param subframe_size size of one subframe yading@10: * yading@10: * \note in buffer must contain 10 items of previous speech data before top of the buffer yading@10: * \remark It is safe to pass the same buffer for input and output. yading@10: */ yading@10: static void residual_filter(int16_t* out, const int16_t* filter_coeffs, const int16_t* in, yading@10: int subframe_size) yading@10: { yading@10: int i, n; yading@10: yading@10: for (n = subframe_size - 1; n >= 0; n--) { yading@10: int sum = 0x800; yading@10: for (i = 0; i < 10; i++) yading@10: sum += filter_coeffs[i] * in[n - i - 1]; yading@10: yading@10: out[n] = in[n] + (sum >> 12); yading@10: } yading@10: } yading@10: yading@10: /** yading@10: * \brief long-term postfilter (4.2.1) yading@10: * \param dsp initialized DSP context yading@10: * \param pitch_delay_int integer part of the pitch delay in the first subframe yading@10: * \param residual filtering input data yading@10: * \param residual_filt [out] speech signal with applied A(z/FORMANT_PP_FACTOR_NUM) filter yading@10: * \param subframe_size size of subframe yading@10: * yading@10: * \return 0 if long-term prediction gain is less than 3dB, 1 - otherwise yading@10: */ yading@10: static int16_t long_term_filter(DSPContext *dsp, int pitch_delay_int, yading@10: const int16_t* residual, int16_t *residual_filt, yading@10: int subframe_size) yading@10: { yading@10: int i, k, tmp, tmp2; yading@10: int sum; yading@10: int L_temp0; yading@10: int L_temp1; yading@10: int64_t L64_temp0; yading@10: int64_t L64_temp1; yading@10: int16_t shift; yading@10: int corr_int_num, corr_int_den; yading@10: yading@10: int ener; yading@10: int16_t sh_ener; yading@10: yading@10: int16_t gain_num,gain_den; //selected signal's gain numerator and denominator yading@10: int16_t sh_gain_num, sh_gain_den; yading@10: int gain_num_square; yading@10: yading@10: int16_t gain_long_num,gain_long_den; //filtered through long interpolation filter signal's gain numerator and denominator yading@10: int16_t sh_gain_long_num, sh_gain_long_den; yading@10: yading@10: int16_t best_delay_int, best_delay_frac; yading@10: yading@10: int16_t delayed_signal_offset; yading@10: int lt_filt_factor_a, lt_filt_factor_b; yading@10: yading@10: int16_t * selected_signal; yading@10: const int16_t * selected_signal_const; //Necessary to avoid compiler warning yading@10: yading@10: int16_t sig_scaled[SUBFRAME_SIZE + RES_PREV_DATA_SIZE]; yading@10: int16_t delayed_signal[ANALYZED_FRAC_DELAYS][SUBFRAME_SIZE+1]; yading@10: int corr_den[ANALYZED_FRAC_DELAYS][2]; yading@10: yading@10: tmp = 0; yading@10: for(i=0; i 0) yading@10: for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++) yading@10: sig_scaled[i] = residual[i] >> shift; yading@10: else yading@10: for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++) yading@10: sig_scaled[i] = residual[i] << -shift; yading@10: yading@10: /* Start of best delay searching code */ yading@10: gain_num = 0; yading@10: yading@10: ener = dsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE, yading@10: sig_scaled + RES_PREV_DATA_SIZE, yading@10: subframe_size); yading@10: if (ener) { yading@10: sh_ener = FFMAX(av_log2(ener) - 14, 0); yading@10: ener >>= sh_ener; yading@10: /* Search for best pitch delay. yading@10: yading@10: sum{ r(n) * r(k,n) ] }^2 yading@10: R'(k)^2 := ------------------------- yading@10: sum{ r(k,n) * r(k,n) } yading@10: yading@10: yading@10: R(T) := sum{ r(n) * r(n-T) ] } yading@10: yading@10: yading@10: where yading@10: r(n-T) is integer delayed signal with delay T yading@10: r(k,n) is non-integer delayed signal with integer delay best_delay yading@10: and fractional delay k */ yading@10: yading@10: /* Find integer delay best_delay which maximizes correlation R(T). yading@10: yading@10: This is also equals to numerator of R'(0), yading@10: since the fine search (second step) is done with 1/8 yading@10: precision around best_delay. */ yading@10: corr_int_num = 0; yading@10: best_delay_int = pitch_delay_int - 1; yading@10: for (i = pitch_delay_int - 1; i <= pitch_delay_int + 1; i++) { yading@10: sum = dsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE, yading@10: sig_scaled + RES_PREV_DATA_SIZE - i, yading@10: subframe_size); yading@10: if (sum > corr_int_num) { yading@10: corr_int_num = sum; yading@10: best_delay_int = i; yading@10: } yading@10: } yading@10: if (corr_int_num) { yading@10: /* Compute denominator of pseudo-normalized correlation R'(0). */ yading@10: corr_int_den = dsp->scalarproduct_int16(sig_scaled - best_delay_int + RES_PREV_DATA_SIZE, yading@10: sig_scaled - best_delay_int + RES_PREV_DATA_SIZE, yading@10: subframe_size); yading@10: yading@10: /* Compute signals with non-integer delay k (with 1/8 precision), yading@10: where k is in [0;6] range. yading@10: Entire delay is qual to best_delay+(k+1)/8 yading@10: This is archieved by applying an interpolation filter of yading@10: legth 33 to source signal. */ yading@10: for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) { yading@10: ff_acelp_interpolate(&delayed_signal[k][0], yading@10: &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int], yading@10: ff_g729_interp_filt_short, yading@10: ANALYZED_FRAC_DELAYS+1, yading@10: 8 - k - 1, yading@10: SHORT_INT_FILT_LEN, yading@10: subframe_size + 1); yading@10: } yading@10: yading@10: /* Compute denominator of pseudo-normalized correlation R'(k). yading@10: yading@10: corr_den[k][0] is square root of R'(k) denominator, for int(T) == int(T0) yading@10: corr_den[k][1] is square root of R'(k) denominator, for int(T) == int(T0)+1 yading@10: yading@10: Also compute maximum value of above denominators over all k. */ yading@10: tmp = corr_int_den; yading@10: for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) { yading@10: sum = dsp->scalarproduct_int16(&delayed_signal[k][1], yading@10: &delayed_signal[k][1], yading@10: subframe_size - 1); yading@10: corr_den[k][0] = sum + delayed_signal[k][0 ] * delayed_signal[k][0 ]; yading@10: corr_den[k][1] = sum + delayed_signal[k][subframe_size] * delayed_signal[k][subframe_size]; yading@10: yading@10: tmp = FFMAX3(tmp, corr_den[k][0], corr_den[k][1]); yading@10: } yading@10: yading@10: sh_gain_den = av_log2(tmp) - 14; yading@10: if (sh_gain_den >= 0) { yading@10: yading@10: sh_gain_num = FFMAX(sh_gain_den, sh_ener); yading@10: /* Loop through all k and find delay that maximizes yading@10: R'(k) correlation. yading@10: Search is done in [int(T0)-1; intT(0)+1] range yading@10: with 1/8 precision. */ yading@10: delayed_signal_offset = 1; yading@10: best_delay_frac = 0; yading@10: gain_den = corr_int_den >> sh_gain_den; yading@10: gain_num = corr_int_num >> sh_gain_num; yading@10: gain_num_square = gain_num * gain_num; yading@10: for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) { yading@10: for (i = 0; i < 2; i++) { yading@10: int16_t gain_num_short, gain_den_short; yading@10: int gain_num_short_square; yading@10: /* Compute numerator of pseudo-normalized yading@10: correlation R'(k). */ yading@10: sum = dsp->scalarproduct_int16(&delayed_signal[k][i], yading@10: sig_scaled + RES_PREV_DATA_SIZE, yading@10: subframe_size); yading@10: gain_num_short = FFMAX(sum >> sh_gain_num, 0); yading@10: yading@10: /* yading@10: gain_num_short_square gain_num_square yading@10: R'(T)^2 = -----------------------, max R'(T)^2= -------------- yading@10: den gain_den yading@10: */ yading@10: gain_num_short_square = gain_num_short * gain_num_short; yading@10: gain_den_short = corr_den[k][i] >> sh_gain_den; yading@10: yading@10: tmp = MULL(gain_num_short_square, gain_den, FRAC_BITS); yading@10: tmp2 = MULL(gain_num_square, gain_den_short, FRAC_BITS); yading@10: yading@10: // R'(T)^2 > max R'(T)^2 yading@10: if (tmp > tmp2) { yading@10: gain_num = gain_num_short; yading@10: gain_den = gain_den_short; yading@10: gain_num_square = gain_num_short_square; yading@10: delayed_signal_offset = i; yading@10: best_delay_frac = k + 1; yading@10: } yading@10: } yading@10: } yading@10: yading@10: /* yading@10: R'(T)^2 yading@10: 2 * --------- < 1 yading@10: R(0) yading@10: */ yading@10: L64_temp0 = (int64_t)gain_num_square << ((sh_gain_num << 1) + 1); yading@10: L64_temp1 = ((int64_t)gain_den * ener) << (sh_gain_den + sh_ener); yading@10: if (L64_temp0 < L64_temp1) yading@10: gain_num = 0; yading@10: } // if(sh_gain_den >= 0) yading@10: } // if(corr_int_num) yading@10: } // if(ener) yading@10: /* End of best delay searching code */ yading@10: yading@10: if (!gain_num) { yading@10: memcpy(residual_filt, residual + RES_PREV_DATA_SIZE, subframe_size * sizeof(int16_t)); yading@10: yading@10: /* Long-term prediction gain is less than 3dB. Long-term postfilter is disabled. */ yading@10: return 0; yading@10: } yading@10: if (best_delay_frac) { yading@10: /* Recompute delayed signal with an interpolation filter of length 129. */ yading@10: ff_acelp_interpolate(residual_filt, yading@10: &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int + delayed_signal_offset], yading@10: ff_g729_interp_filt_long, yading@10: ANALYZED_FRAC_DELAYS + 1, yading@10: 8 - best_delay_frac, yading@10: LONG_INT_FILT_LEN, yading@10: subframe_size + 1); yading@10: /* Compute R'(k) correlation's numerator. */ yading@10: sum = dsp->scalarproduct_int16(residual_filt, yading@10: sig_scaled + RES_PREV_DATA_SIZE, yading@10: subframe_size); yading@10: yading@10: if (sum < 0) { yading@10: gain_long_num = 0; yading@10: sh_gain_long_num = 0; yading@10: } else { yading@10: tmp = FFMAX(av_log2(sum) - 14, 0); yading@10: sum >>= tmp; yading@10: gain_long_num = sum; yading@10: sh_gain_long_num = tmp; yading@10: } yading@10: yading@10: /* Compute R'(k) correlation's denominator. */ yading@10: sum = dsp->scalarproduct_int16(residual_filt, residual_filt, subframe_size); yading@10: yading@10: tmp = FFMAX(av_log2(sum) - 14, 0); yading@10: sum >>= tmp; yading@10: gain_long_den = sum; yading@10: sh_gain_long_den = tmp; yading@10: yading@10: /* Select between original and delayed signal. yading@10: Delayed signal will be selected if it increases R'(k) yading@10: correlation. */ yading@10: L_temp0 = gain_num * gain_num; yading@10: L_temp0 = MULL(L_temp0, gain_long_den, FRAC_BITS); yading@10: yading@10: L_temp1 = gain_long_num * gain_long_num; yading@10: L_temp1 = MULL(L_temp1, gain_den, FRAC_BITS); yading@10: yading@10: tmp = ((sh_gain_long_num - sh_gain_num) << 1) - (sh_gain_long_den - sh_gain_den); yading@10: if (tmp > 0) yading@10: L_temp0 >>= tmp; yading@10: else yading@10: L_temp1 >>= -tmp; yading@10: yading@10: /* Check if longer filter increases the values of R'(k). */ yading@10: if (L_temp1 > L_temp0) { yading@10: /* Select long filter. */ yading@10: selected_signal = residual_filt; yading@10: gain_num = gain_long_num; yading@10: gain_den = gain_long_den; yading@10: sh_gain_num = sh_gain_long_num; yading@10: sh_gain_den = sh_gain_long_den; yading@10: } else yading@10: /* Select short filter. */ yading@10: selected_signal = &delayed_signal[best_delay_frac-1][delayed_signal_offset]; yading@10: yading@10: /* Rescale selected signal to original value. */ yading@10: if (shift > 0) yading@10: for (i = 0; i < subframe_size; i++) yading@10: selected_signal[i] <<= shift; yading@10: else yading@10: for (i = 0; i < subframe_size; i++) yading@10: selected_signal[i] >>= -shift; yading@10: yading@10: /* necessary to avoid compiler warning */ yading@10: selected_signal_const = selected_signal; yading@10: } // if(best_delay_frac) yading@10: else yading@10: selected_signal_const = residual + RES_PREV_DATA_SIZE - (best_delay_int + 1 - delayed_signal_offset); yading@10: #ifdef G729_BITEXACT yading@10: tmp = sh_gain_num - sh_gain_den; yading@10: if (tmp > 0) yading@10: gain_den >>= tmp; yading@10: else yading@10: gain_num >>= -tmp; yading@10: yading@10: if (gain_num > gain_den) yading@10: lt_filt_factor_a = MIN_LT_FILT_FACTOR_A; yading@10: else { yading@10: gain_num >>= 2; yading@10: gain_den >>= 1; yading@10: lt_filt_factor_a = (gain_den << 15) / (gain_den + gain_num); yading@10: } yading@10: #else yading@10: L64_temp0 = ((int64_t)gain_num) << (sh_gain_num - 1); yading@10: L64_temp1 = ((int64_t)gain_den) << sh_gain_den; yading@10: lt_filt_factor_a = FFMAX((L64_temp1 << 15) / (L64_temp1 + L64_temp0), MIN_LT_FILT_FACTOR_A); yading@10: #endif yading@10: yading@10: /* Filter through selected filter. */ yading@10: lt_filt_factor_b = 32767 - lt_filt_factor_a + 1; yading@10: yading@10: ff_acelp_weighted_vector_sum(residual_filt, residual + RES_PREV_DATA_SIZE, yading@10: selected_signal_const, yading@10: lt_filt_factor_a, lt_filt_factor_b, yading@10: 1<<14, 15, subframe_size); yading@10: yading@10: // Long-term prediction gain is larger than 3dB. yading@10: return 1; yading@10: } yading@10: yading@10: /** yading@10: * \brief Calculate reflection coefficient for tilt compensation filter (4.2.3). yading@10: * \param dsp initialized DSP context yading@10: * \param lp_gn (3.12) coefficients of A(z/FORMANT_PP_FACTOR_NUM) filter yading@10: * \param lp_gd (3.12) coefficients of A(z/FORMANT_PP_FACTOR_DEN) filter yading@10: * \param speech speech to update yading@10: * \param subframe_size size of subframe yading@10: * yading@10: * \return (3.12) reflection coefficient yading@10: * yading@10: * \remark The routine also calculates the gain term for the short-term yading@10: * filter (gf) and multiplies the speech data by 1/gf. yading@10: * yading@10: * \note All members of lp_gn, except 10-19 must be equal to zero. yading@10: */ yading@10: static int16_t get_tilt_comp(DSPContext *dsp, int16_t *lp_gn, yading@10: const int16_t *lp_gd, int16_t* speech, yading@10: int subframe_size) yading@10: { yading@10: int rh1,rh0; // (3.12) yading@10: int temp; yading@10: int i; yading@10: int gain_term; yading@10: yading@10: lp_gn[10] = 4096; //1.0 in (3.12) yading@10: yading@10: /* Apply 1/A(z/FORMANT_PP_FACTOR_DEN) filter to hf. */ yading@10: ff_celp_lp_synthesis_filter(lp_gn + 11, lp_gd + 1, lp_gn + 11, 22, 10, 0, 0, 0x800); yading@10: /* Now lp_gn (starting with 10) contains impulse response yading@10: of A(z/FORMANT_PP_FACTOR_NUM)/A(z/FORMANT_PP_FACTOR_DEN) filter. */ yading@10: yading@10: rh0 = dsp->scalarproduct_int16(lp_gn + 10, lp_gn + 10, 20); yading@10: rh1 = dsp->scalarproduct_int16(lp_gn + 10, lp_gn + 11, 20); yading@10: yading@10: /* downscale to avoid overflow */ yading@10: temp = av_log2(rh0) - 14; yading@10: if (temp > 0) { yading@10: rh0 >>= temp; yading@10: rh1 >>= temp; yading@10: } yading@10: yading@10: if (FFABS(rh1) > rh0 || !rh0) yading@10: return 0; yading@10: yading@10: gain_term = 0; yading@10: for (i = 0; i < 20; i++) yading@10: gain_term += FFABS(lp_gn[i + 10]); yading@10: gain_term >>= 2; // (3.12) -> (5.10) yading@10: yading@10: if (gain_term > 0x400) { // 1.0 in (5.10) yading@10: temp = 0x2000000 / gain_term; // 1.0/gain_term in (0.15) yading@10: for (i = 0; i < subframe_size; i++) yading@10: speech[i] = (speech[i] * temp + 0x4000) >> 15; yading@10: } yading@10: yading@10: return -(rh1 << 15) / rh0; yading@10: } yading@10: yading@10: /** yading@10: * \brief Apply tilt compensation filter (4.2.3). yading@10: * \param res_pst [in/out] residual signal (partially filtered) yading@10: * \param k1 (3.12) reflection coefficient yading@10: * \param subframe_size size of subframe yading@10: * \param ht_prev_data previous data for 4.2.3, equation 86 yading@10: * yading@10: * \return new value for ht_prev_data yading@10: */ yading@10: static int16_t apply_tilt_comp(int16_t* out, int16_t* res_pst, int refl_coeff, yading@10: int subframe_size, int16_t ht_prev_data) yading@10: { yading@10: int tmp, tmp2; yading@10: int i; yading@10: int gt, ga; yading@10: int fact, sh_fact; yading@10: yading@10: if (refl_coeff > 0) { yading@10: gt = (refl_coeff * G729_TILT_FACTOR_PLUS + 0x4000) >> 15; yading@10: fact = 0x4000; // 0.5 in (0.15) yading@10: sh_fact = 15; yading@10: } else { yading@10: gt = (refl_coeff * G729_TILT_FACTOR_MINUS + 0x4000) >> 15; yading@10: fact = 0x800; // 0.5 in (3.12) yading@10: sh_fact = 12; yading@10: } yading@10: ga = (fact << 15) / av_clip_int16(32768 - FFABS(gt)); yading@10: gt >>= 1; yading@10: yading@10: /* Apply tilt compensation filter to signal. */ yading@10: tmp = res_pst[subframe_size - 1]; yading@10: yading@10: for (i = subframe_size - 1; i >= 1; i--) { yading@10: tmp2 = (res_pst[i] << 15) + ((gt * res_pst[i-1]) << 1); yading@10: tmp2 = (tmp2 + 0x4000) >> 15; yading@10: yading@10: tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact; yading@10: out[i] = tmp2; yading@10: } yading@10: tmp2 = (res_pst[0] << 15) + ((gt * ht_prev_data) << 1); yading@10: tmp2 = (tmp2 + 0x4000) >> 15; yading@10: tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact; yading@10: out[0] = tmp2; yading@10: yading@10: return tmp; yading@10: } yading@10: yading@10: void ff_g729_postfilter(DSPContext *dsp, int16_t* ht_prev_data, int* voicing, yading@10: const int16_t *lp_filter_coeffs, int pitch_delay_int, yading@10: int16_t* residual, int16_t* res_filter_data, yading@10: int16_t* pos_filter_data, int16_t *speech, int subframe_size) yading@10: { yading@10: int16_t residual_filt_buf[SUBFRAME_SIZE+11]; yading@10: int16_t lp_gn[33]; // (3.12) yading@10: int16_t lp_gd[11]; // (3.12) yading@10: int tilt_comp_coeff; yading@10: int i; yading@10: yading@10: /* Zero-filling is necessary for tilt-compensation filter. */ yading@10: memset(lp_gn, 0, 33 * sizeof(int16_t)); yading@10: yading@10: /* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */ yading@10: for (i = 0; i < 10; i++) yading@10: lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15; yading@10: yading@10: /* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */ yading@10: for (i = 0; i < 10; i++) yading@10: lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15; yading@10: yading@10: /* residual signal calculation (one-half of short-term postfilter) */ yading@10: memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t)); yading@10: residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size); yading@10: /* Save data to use it in the next subframe. */ yading@10: memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t)); yading@10: yading@10: /* long-term filter. If long-term prediction gain is larger than 3dB (returned value is yading@10: nonzero) then declare current subframe as periodic. */ yading@10: *voicing = FFMAX(*voicing, long_term_filter(dsp, pitch_delay_int, yading@10: residual, residual_filt_buf + 10, yading@10: subframe_size)); yading@10: yading@10: /* shift residual for using in next subframe */ yading@10: memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t)); yading@10: yading@10: /* short-term filter tilt compensation */ yading@10: tilt_comp_coeff = get_tilt_comp(dsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size); yading@10: yading@10: /* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */ yading@10: ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1, yading@10: residual_filt_buf + 10, yading@10: subframe_size, 10, 0, 0, 0x800); yading@10: memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t)); yading@10: yading@10: *ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff, yading@10: subframe_size, *ht_prev_data); yading@10: } yading@10: yading@10: /** yading@10: * \brief Adaptive gain control (4.2.4) yading@10: * \param gain_before gain of speech before applying postfilters yading@10: * \param gain_after gain of speech after applying postfilters yading@10: * \param speech [in/out] signal buffer yading@10: * \param subframe_size length of subframe yading@10: * \param gain_prev (3.12) previous value of gain coefficient yading@10: * yading@10: * \return (3.12) last value of gain coefficient yading@10: */ yading@10: int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech, yading@10: int subframe_size, int16_t gain_prev) yading@10: { yading@10: int gain; // (3.12) yading@10: int n; yading@10: int exp_before, exp_after; yading@10: yading@10: if(!gain_after && gain_before) yading@10: return 0; yading@10: yading@10: if (gain_before) { yading@10: yading@10: exp_before = 14 - av_log2(gain_before); yading@10: gain_before = bidir_sal(gain_before, exp_before); yading@10: yading@10: exp_after = 14 - av_log2(gain_after); yading@10: gain_after = bidir_sal(gain_after, exp_after); yading@10: yading@10: if (gain_before < gain_after) { yading@10: gain = (gain_before << 15) / gain_after; yading@10: gain = bidir_sal(gain, exp_after - exp_before - 1); yading@10: } else { yading@10: gain = ((gain_before - gain_after) << 14) / gain_after + 0x4000; yading@10: gain = bidir_sal(gain, exp_after - exp_before); yading@10: } yading@10: gain = (gain * G729_AGC_FAC1 + 0x4000) >> 15; // gain * (1-0.9875) yading@10: } else yading@10: gain = 0; yading@10: yading@10: for (n = 0; n < subframe_size; n++) { yading@10: // gain_prev = gain + 0.9875 * gain_prev yading@10: gain_prev = (G729_AGC_FACTOR * gain_prev + 0x4000) >> 15; yading@10: gain_prev = av_clip_int16(gain + gain_prev); yading@10: speech[n] = av_clip_int16((speech[n] * gain_prev + 0x2000) >> 14); yading@10: } yading@10: return gain_prev; yading@10: }