Mercurial > hg > plosone_underreview
changeset 53:7532363b9dda branch-tests
added yticks and savefig in explain components
author | Maria Panteli <m.x.panteli@gmail.com> |
---|---|
date | Mon, 18 Sep 2017 11:25:05 +0100 |
parents | 635028c5be34 |
children | dbcd5b2a4efa |
files | notebooks/explain_components.ipynb |
diffstat | 1 files changed, 62 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/notebooks/explain_components.ipynb Sun Sep 17 18:43:16 2017 +0100 +++ b/notebooks/explain_components.ipynb Mon Sep 18 11:25:05 2017 +0100 @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": { "collapsed": true }, @@ -213,6 +213,7 @@ " plt.title('lda')\n", " plt.xlabel('components')\n", " plt.ylabel('features')\n", + " plt.savefig('../data/lda_'+feat_labels[i]+'.pdf')\n", " \n", " WW = ssm_feat.pca_transformer.components_.T\n", " plt.figure()\n", @@ -220,7 +221,58 @@ " plt.colorbar()\n", " plt.title('pca')\n", " plt.xlabel('components')\n", - " plt.ylabel('features')" + " plt.ylabel('features')\n", + " plt.savefig('../data/pca_'+feat_labels[i]+'.pdf')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## export figure for LDA, PCA timbral components" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "i = 3\n", + "print \"mapping \" + feat_labels[i]\n", + "inds = feat_inds[i]\n", + "ssm_feat = util_feature_learning.Transformer()\n", + "if min_variance is not None:\n", + " ssm_feat.fit_data(traindata[:, inds], trainlabels, n_components=len(inds), pca_only=True)\n", + " n_components = np.where(ssm_feat.pca_transformer.explained_variance_ratio_.cumsum()>min_variance)[0][0]+1\n", + " print n_components, len(inds)\n", + " ssm_feat.fit_lda_data(traindata[:, inds], trainlabels.ravel(), n_components=n_components)\n", + " print \"done fitting\"\n", + " WW = ssm_feat.lda_transformer.scalings_\n", + " plt.figure()\n", + " plt.imshow(WW[:, :n_components], aspect='auto')\n", + " plt.colorbar()\n", + " plt.title('lda')\n", + " plt.xlabel('components')\n", + " plt.ylabel('features')\n", + " y_loc = np.arange(10, 80, 20)\n", + " y_labs = ['mean(MFCC), mean(DELTA), std(MFCC), std(DELTA)']\n", + " plt.yticks(y_loc, y_labs, rotation='vertical')\n", + " plt.savefig('../data/lda_'+feat_labels[i]+'.pdf')\n", + "\n", + " WW = ssm_feat.pca_transformer.components_.T\n", + " plt.figure()\n", + " plt.imshow(WW[:, :n_components], aspect='auto')\n", + " plt.colorbar()\n", + " plt.title('pca')\n", + " plt.xlabel('components')\n", + " plt.ylabel('features')\n", + " y_loc = np.arange(10, 80, 20)\n", + " y_labs = ['mean(MFCC), mean(DELTA), std(MFCC), std(DELTA)']\n", + " plt.yticks(y_loc, y_labs, rotation='vertical')\n", + " plt.savefig('../data/pca_'+feat_labels[i]+'.pdf')" ] }, { @@ -418,10 +470,16 @@ "plt.figure()\n", "plt.imshow(classifier_WW, aspect='auto')\n", "feat_lens = np.array([X_list[i].shape[1] for i in range(len(X_list))])\n", - "plt.yticks(np.cumsum(feat_lens), ['rhy', 'mel', 'mfc', 'chr']);\n", + "#plt.yticks(np.cumsum(feat_lens), ['rhy', 'mel', 'mfc', 'chr']);\n", "plt.colorbar()\n", "plt.xlabel('components')\n", "plt.ylabel('features')\n", + "boundaries = np.concatenate([[0], np.cumsum(feat_lens)])\n", + "y_loc = np.diff(boundaries) / 2.0 + boundaries[:-1]\n", + "y_labs = ['rhythm', 'melody', 'timbre', 'harmony']\n", + "plt.yticks(y_loc, y_labs, rotation='vertical')\n", + "plt.savefig('../data/pca_'+feat_labels[i]+'.pdf')\n", + "\n", "\n", "classifier_WW = ssm_feat.modelSVM.support_vectors_.T\n", "plt.figure()\n", @@ -550,7 +608,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", - "version": "2.7.11" + "version": "2.7.12" } }, "nbformat": 4,