Mercurial > hg > plosone_underreview
view scripts/load_dataset.py @ 4:e50c63cf96be branch-tests
rearranging folders
author | Maria Panteli |
---|---|
date | Mon, 11 Sep 2017 11:51:50 +0100 |
parents | |
children | 98718fdd8326 |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Created on Wed Mar 15 22:52:57 2017 @author: mariapanteli """ import numpy as np import pandas as pd import pickle import load_features import util_dataset import util_filter_dataset #METADATA_FILE = 'sample_dataset/metadata.csv' #OUTPUT_FILES = ['sample_dataset/train_data.pickle', 'sample_dataset/val_data.pickle', 'sample_dataset/test_data.pickle'] WIN_SIZE = 2 METADATA_FILE = 'data/metadata_BLSM_language_all.csv' #OUTPUT_FILES = ['/import/c4dm-04/mariap/train_data_cf.pickle', '/import/c4dm-04/mariap/val_data_cf.pickle', '/import/c4dm-04/mariap/test_data_cf.pickle'] #OUTPUT_FILES = ['/import/c4dm-04/mariap/train_data_cf_4.pickle', '/import/c4dm-04/mariap/val_data_cf_4.pickle', '/import/c4dm-04/mariap/test_data_cf_4.pickle'] OUTPUT_FILES = ['/import/c4dm-04/mariap/train_data_melodia_'+str(WIN_SIZE)+'.pickle', '/import/c4dm-04/mariap/val_data_melodia_'+str(WIN_SIZE)+'.pickle', '/import/c4dm-04/mariap/test_data_melodia_'+str(WIN_SIZE)+'.pickle'] def extract_features(df, win2sec=8.0): """Extract features from melspec and chroma. Parameters ---------- df : pd.DataFrame Metadata including class label and path to audio, melspec, chroma win2sec : float The window size for the second frame decomposition of the features Returns ------- X : np.array The features for every frame x every audio file in the dataset Y : np.array The class labels for every frame in the dataset Y_audio : np.array The audio labels """ feat_loader = load_features.FeatureLoader(win2sec=win2sec) frames_rhy, frames_mfcc, frames_chroma, frames_mel, Y_df, Y_audio_df = feat_loader.get_features(df) print frames_rhy.shape, frames_mel.shape, frames_mfcc.shape, frames_chroma.shape X = np.concatenate((frames_rhy, frames_mel, frames_mfcc, frames_chroma), axis=1) Y = Y_df.get_values() Y_audio = Y_audio_df.get_values() return X, Y, Y_audio if __name__ == '__main__': # load dataset df = pd.read_csv(METADATA_FILE) df = util_filter_dataset.remove_missing_data(df) subset_idx = util_dataset.subset_labels(df['Country'].get_values()) df = df.iloc[subset_idx, :] X, Y = np.arange(len(df)), df['Country'].get_values() # split in train, val, test set train_set, val_set, test_set = util_dataset.get_train_val_test_idx(X, Y) # extract features and write output X_train, Y_train, Y_audio_train = extract_features(df.iloc[train_set[0], :], win2sec=WIN_SIZE) with open(OUTPUT_FILES[0], 'wb') as f: pickle.dump([X_train, Y_train, Y_audio_train], f) X_val, Y_val, Y_audio_val = extract_features(df.iloc[val_set[0], :], win2sec=WIN_SIZE) with open(OUTPUT_FILES[1], 'wb') as f: pickle.dump([X_val, Y_val, Y_audio_val], f) X_test, Y_test, Y_audio_test = extract_features(df.iloc[test_set[0], :], win2sec=WIN_SIZE) with open(OUTPUT_FILES[2], 'wb') as f: pickle.dump([X_test, Y_test, Y_audio_test], f) #out_file = '/import/c4dm-04/mariap/test_data_melodia_1_test.pickle' # pickle.dump([X_test, Y_test, Y_audio_test], f) #with open(out_file, 'wb') as f: