comparison scripts/load_dataset.py @ 4:e50c63cf96be branch-tests

rearranging folders
author Maria Panteli
date Mon, 11 Sep 2017 11:51:50 +0100
parents
children 98718fdd8326
comparison
equal deleted inserted replaced
3:230a0cf17de0 4:e50c63cf96be
1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Mar 15 22:52:57 2017
4
5 @author: mariapanteli
6 """
7
8 import numpy as np
9 import pandas as pd
10 import pickle
11
12 import load_features
13 import util_dataset
14 import util_filter_dataset
15
16
17 #METADATA_FILE = 'sample_dataset/metadata.csv'
18 #OUTPUT_FILES = ['sample_dataset/train_data.pickle', 'sample_dataset/val_data.pickle', 'sample_dataset/test_data.pickle']
19 WIN_SIZE = 2
20 METADATA_FILE = 'data/metadata_BLSM_language_all.csv'
21 #OUTPUT_FILES = ['/import/c4dm-04/mariap/train_data_cf.pickle', '/import/c4dm-04/mariap/val_data_cf.pickle', '/import/c4dm-04/mariap/test_data_cf.pickle']
22 #OUTPUT_FILES = ['/import/c4dm-04/mariap/train_data_cf_4.pickle', '/import/c4dm-04/mariap/val_data_cf_4.pickle', '/import/c4dm-04/mariap/test_data_cf_4.pickle']
23 OUTPUT_FILES = ['/import/c4dm-04/mariap/train_data_melodia_'+str(WIN_SIZE)+'.pickle',
24 '/import/c4dm-04/mariap/val_data_melodia_'+str(WIN_SIZE)+'.pickle',
25 '/import/c4dm-04/mariap/test_data_melodia_'+str(WIN_SIZE)+'.pickle']
26
27 def extract_features(df, win2sec=8.0):
28 """Extract features from melspec and chroma.
29
30 Parameters
31 ----------
32 df : pd.DataFrame
33 Metadata including class label and path to audio, melspec, chroma
34 win2sec : float
35 The window size for the second frame decomposition of the features
36
37 Returns
38 -------
39 X : np.array
40 The features for every frame x every audio file in the dataset
41 Y : np.array
42 The class labels for every frame in the dataset
43 Y_audio : np.array
44 The audio labels
45 """
46 feat_loader = load_features.FeatureLoader(win2sec=win2sec)
47 frames_rhy, frames_mfcc, frames_chroma, frames_mel, Y_df, Y_audio_df = feat_loader.get_features(df)
48 print frames_rhy.shape, frames_mel.shape, frames_mfcc.shape, frames_chroma.shape
49 X = np.concatenate((frames_rhy, frames_mel, frames_mfcc, frames_chroma), axis=1)
50 Y = Y_df.get_values()
51 Y_audio = Y_audio_df.get_values()
52 return X, Y, Y_audio
53
54
55 if __name__ == '__main__':
56 # load dataset
57 df = pd.read_csv(METADATA_FILE)
58 df = util_filter_dataset.remove_missing_data(df)
59 subset_idx = util_dataset.subset_labels(df['Country'].get_values())
60 df = df.iloc[subset_idx, :]
61 X, Y = np.arange(len(df)), df['Country'].get_values()
62
63 # split in train, val, test set
64 train_set, val_set, test_set = util_dataset.get_train_val_test_idx(X, Y)
65
66 # extract features and write output
67 X_train, Y_train, Y_audio_train = extract_features(df.iloc[train_set[0], :], win2sec=WIN_SIZE)
68 with open(OUTPUT_FILES[0], 'wb') as f:
69 pickle.dump([X_train, Y_train, Y_audio_train], f)
70
71 X_val, Y_val, Y_audio_val = extract_features(df.iloc[val_set[0], :], win2sec=WIN_SIZE)
72 with open(OUTPUT_FILES[1], 'wb') as f:
73 pickle.dump([X_val, Y_val, Y_audio_val], f)
74
75 X_test, Y_test, Y_audio_test = extract_features(df.iloc[test_set[0], :], win2sec=WIN_SIZE)
76 with open(OUTPUT_FILES[2], 'wb') as f:
77 pickle.dump([X_test, Y_test, Y_audio_test], f)
78
79 #out_file = '/import/c4dm-04/mariap/test_data_melodia_1_test.pickle'
80 # pickle.dump([X_test, Y_test, Y_audio_test], f)
81 #with open(out_file, 'wb') as f: