Mercurial > hg > plosone_underreview
view notebooks/sensitivity_experiment_server_mapper.py @ 48:08b9327f1935 branch-tests
mapper now writes output
author | mpanteli <m.x.panteli@gmail.com> |
---|---|
date | Fri, 15 Sep 2017 17:46:45 +0100 |
parents | |
children |
line wrap: on
line source
import numpy as np import pandas as pd import sys sys.path.append('../') import scripts.load_dataset as load_dataset import scripts.map_and_average as mapper import scripts.classification as classification import scripts.outliers as outliers #df = load_dataset.sample_dataset(csv_file=load_dataset.METADATA_FILE) OUTPUT_FILES = load_dataset.OUTPUT_FILES n_iters = 1 n = int(sys.argv[1]) MAPPER_OUTPUT_FILES = mapper.OUTPUT_FILES #for n in range(n_iters): if 1: print "iteration %d" % n print "mapping..." mapper.INPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for output_file in OUTPUT_FILES] _, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99) mapper.OUTPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for output_file in MAPPER_OUTPUT_FILES] mapper.write_output([], [], ldadata_list, [], [], Y, Yaudio) #X = np.concatenate(ldadata_list, axis=1) ## classification and confusion #print "classifying..." #traininds, testinds = classification.get_train_test_indices(Yaudio) #X_train, Y_train, X_test, Y_test = classification.get_train_test_sets(X, Y, traininds, testinds) #accuracy, _ = classification.confusion_matrix(X_train, Y_train, X_test, Y_test, saveCF=False, plots=False) #print accuracy ## outliers #print "detecting outliers..." #df_global, threshold, MD = outliers.get_outliers_df(X, Y, chi2thr=0.999) #outliers.print_most_least_outliers_topN(df_global, N=10) ## write output #print "writing file" #df_global.to_csv('../data/outliers_'+str(n)+'.csv', index=False)