comparison notebooks/sensitivity_experiment_server_mapper.py @ 48:08b9327f1935 branch-tests

mapper now writes output
author mpanteli <m.x.panteli@gmail.com>
date Fri, 15 Sep 2017 17:46:45 +0100
parents
children
comparison
equal deleted inserted replaced
47:081ff4ea7da7 48:08b9327f1935
1 import numpy as np
2 import pandas as pd
3 import sys
4 sys.path.append('../')
5 import scripts.load_dataset as load_dataset
6 import scripts.map_and_average as mapper
7 import scripts.classification as classification
8 import scripts.outliers as outliers
9
10 #df = load_dataset.sample_dataset(csv_file=load_dataset.METADATA_FILE)
11 OUTPUT_FILES = load_dataset.OUTPUT_FILES
12 n_iters = 1
13 n = int(sys.argv[1])
14 MAPPER_OUTPUT_FILES = mapper.OUTPUT_FILES
15
16 #for n in range(n_iters):
17 if 1:
18 print "iteration %d" % n
19
20 print "mapping..."
21 mapper.INPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for
22 output_file in OUTPUT_FILES]
23 _, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99)
24 mapper.OUTPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for
25 output_file in MAPPER_OUTPUT_FILES]
26 mapper.write_output([], [], ldadata_list, [], [], Y, Yaudio)
27
28 #X = np.concatenate(ldadata_list, axis=1)
29
30 ## classification and confusion
31 #print "classifying..."
32 #traininds, testinds = classification.get_train_test_indices(Yaudio)
33 #X_train, Y_train, X_test, Y_test = classification.get_train_test_sets(X, Y, traininds, testinds)
34 #accuracy, _ = classification.confusion_matrix(X_train, Y_train, X_test, Y_test, saveCF=False, plots=False)
35 #print accuracy
36
37 ## outliers
38 #print "detecting outliers..."
39 #df_global, threshold, MD = outliers.get_outliers_df(X, Y, chi2thr=0.999)
40 #outliers.print_most_least_outliers_topN(df_global, N=10)
41
42 ## write output
43 #print "writing file"
44 #df_global.to_csv('../data/outliers_'+str(n)+'.csv', index=False)