Mercurial > hg > plosone_underreview
diff scripts/load_dataset.py @ 13:98718fdd8326 branch-tests
edits in the core functions
author | Maria Panteli <m.x.panteli@gmail.com> |
---|---|
date | Tue, 12 Sep 2017 18:03:47 +0100 |
parents | e50c63cf96be |
children | 9847b954c217 |
line wrap: on
line diff
--- a/scripts/load_dataset.py Tue Sep 12 13:31:42 2017 +0100 +++ b/scripts/load_dataset.py Tue Sep 12 18:03:47 2017 +0100 @@ -8,22 +8,86 @@ import numpy as np import pandas as pd import pickle +from sklearn.model_selection import train_test_split import load_features -import util_dataset import util_filter_dataset #METADATA_FILE = 'sample_dataset/metadata.csv' #OUTPUT_FILES = ['sample_dataset/train_data.pickle', 'sample_dataset/val_data.pickle', 'sample_dataset/test_data.pickle'] -WIN_SIZE = 2 +WIN_SIZE = 8 METADATA_FILE = 'data/metadata_BLSM_language_all.csv' -#OUTPUT_FILES = ['/import/c4dm-04/mariap/train_data_cf.pickle', '/import/c4dm-04/mariap/val_data_cf.pickle', '/import/c4dm-04/mariap/test_data_cf.pickle'] -#OUTPUT_FILES = ['/import/c4dm-04/mariap/train_data_cf_4.pickle', '/import/c4dm-04/mariap/val_data_cf_4.pickle', '/import/c4dm-04/mariap/test_data_cf_4.pickle'] OUTPUT_FILES = ['/import/c4dm-04/mariap/train_data_melodia_'+str(WIN_SIZE)+'.pickle', '/import/c4dm-04/mariap/val_data_melodia_'+str(WIN_SIZE)+'.pickle', '/import/c4dm-04/mariap/test_data_melodia_'+str(WIN_SIZE)+'.pickle'] + +def get_train_val_test_idx(X, Y, seed=None): + """ Split in train, validation, test sets. + + Parameters + ---------- + X : np.array + Data or indices. + Y : np.array + Class labels for data in X. + seed: int + Random seed. + Returns + ------- + (X_train, Y_train) : tuple + Data X and labels y for the train set + (X_val, Y_val) : tuple + Data X and labels y for the validation set + (X_test, Y_test) : tuple + Data X and labels y for the test set + + """ + X_train, X_val_test, Y_train, Y_val_test = train_test_split(X, Y, train_size=0.6, random_state=seed, stratify=Y) + X_val, X_test, Y_val, Y_test = train_test_split(X_val_test, Y_val_test, train_size=0.5, random_state=seed, stratify=Y_val_test) + return (X_train, Y_train), (X_val, Y_val), (X_test, Y_test) + + +def subset_labels(Y, N_min=10, N_max=100, seed=None): + """ Subset dataset to contain minimum N_min and maximum N_max instances + per class. Return indices for this subset. + + Parameters + ---------- + Y : np.array + Class labels + N_min : int + Minimum instances per class + N_max : int + Maximum instances per class + seed: int + Random seed. + + Returns + ------- + subset_idx : np.array + Indices for a subset with classes of size bounded by N_min, N_max + + """ + np.random.seed(seed=seed) + subset_idx = [] + labels = np.unique(Y) + for label in labels: + label_idx = np.where(Y==label)[0] + counts = len(label_idx) + if counts>=N_max: + subset_idx.append(np.random.choice(label_idx, N_max, replace=False)) + elif counts>=N_min and counts<N_max: + subset_idx.append(label_idx) + else: + # not enough samples for this class, skip + continue + if len(subset_idx)>0: + subset_idx = np.concatenate(subset_idx, axis=0) + return subset_idx + + def extract_features(df, win2sec=8.0): """Extract features from melspec and chroma. @@ -56,12 +120,12 @@ # load dataset df = pd.read_csv(METADATA_FILE) df = util_filter_dataset.remove_missing_data(df) - subset_idx = util_dataset.subset_labels(df['Country'].get_values()) + subset_idx = subset_labels(df['Country'].get_values()) df = df.iloc[subset_idx, :] X, Y = np.arange(len(df)), df['Country'].get_values() # split in train, val, test set - train_set, val_set, test_set = util_dataset.get_train_val_test_idx(X, Y) + train_set, val_set, test_set = get_train_val_test_idx(X, Y) # extract features and write output X_train, Y_train, Y_audio_train = extract_features(df.iloc[train_set[0], :], win2sec=WIN_SIZE) @@ -76,6 +140,3 @@ with open(OUTPUT_FILES[2], 'wb') as f: pickle.dump([X_test, Y_test, Y_audio_test], f) -#out_file = '/import/c4dm-04/mariap/test_data_melodia_1_test.pickle' -# pickle.dump([X_test, Y_test, Y_audio_test], f) -#with open(out_file, 'wb') as f: