diff notebooks/results_for_30_seconds.ipynb @ 71:04fc6e809a42 branch-tests

notebooks
author mpanteli <m.x.panteli@gmail.com>
date Fri, 22 Sep 2017 18:03:41 +0100
parents 9b10b688c2ac
children 9e526f7c9715
line wrap: on
line diff
--- a/notebooks/results_for_30_seconds.ipynb	Thu Sep 21 20:11:43 2017 +0100
+++ b/notebooks/results_for_30_seconds.ipynb	Fri Sep 22 18:03:41 2017 +0100
@@ -2,15 +2,15 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 36,
+   "execution_count": 1,
    "metadata": {},
    "outputs": [
     {
-     "name": "stdout",
+     "name": "stderr",
      "output_type": "stream",
      "text": [
-      "The autoreload extension is already loaded. To reload it, use:\n",
-      "  %reload_ext autoreload\n"
+      "/homes/mp305/anaconda/lib/python2.7/site-packages/librosa/core/audio.py:33: UserWarning: Could not import scikits.samplerate. Falling back to scipy.signal\n",
+      "  warnings.warn('Could not import scikits.samplerate. '\n"
      ]
     }
    ],
@@ -87,7 +87,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 37,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
@@ -123,14 +123,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 38,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "['/import/c4dm-04/mariap/train_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/val_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/test_data_melodia_8_30sec.pickle'] ['/import/c4dm-04/mariap/lda_data_melodia_8_30sec_30sec.pickle', '/import/c4dm-04/mariap/pca_data_melodia_8_30sec_30sec.pickle', '/import/c4dm-04/mariap/nmf_data_melodia_8_30sec_30sec.pickle', '/import/c4dm-04/mariap/ssnmf_data_melodia_8_30sec_30sec.pickle', '/import/c4dm-04/mariap/na_data_melodia_8_30sec_30sec.pickle']\n"
+      "['/import/c4dm-04/mariap/train_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/val_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/test_data_melodia_8_30sec.pickle'] ['/import/c4dm-04/mariap/lda_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/pca_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/nmf_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/ssnmf_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/na_data_melodia_8_30sec.pickle']\n"
      ]
     }
    ],
@@ -144,7 +144,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": null,
    "metadata": {},
    "outputs": [
     {
@@ -158,7 +158,7 @@
       "variance explained 1.0\n",
       "138 400\n",
       "training with PCA transform...\n",
-      "variance explained 0.989999211296\n",
+      "variance explained 0.989994197011\n",
       "training with LDA transform...\n"
      ]
     },
@@ -166,6 +166,8 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
+      "/homes/mp305/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py:526: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+      "  y = column_or_1d(y, warn=True)\n",
       "/homes/mp305/anaconda/lib/python2.7/site-packages/sklearn/discriminant_analysis.py:455: UserWarning: The priors do not sum to 1. Renormalizing\n",
       "  UserWarning)\n"
      ]
@@ -175,6 +177,10 @@
      "output_type": "stream",
      "text": [
       "variance explained 1.0\n",
+      "training with NMF transform...\n",
+      "reconstruction error 6.59195506061\n",
+      "training with SSNMF transform...\n",
+      "reconstruction error 25.0727210368\n",
       "transform test data...\n",
       "mapping mel\n",
       "training with PCA transform...\n",
@@ -184,32 +190,16 @@
       "variance explained 0.990347897477\n",
       "training with LDA transform...\n",
       "variance explained 1.0\n",
-      "transform test data...\n",
-      "mapping mfc\n",
-      "training with PCA transform...\n",
-      "variance explained 1.0\n",
-      "39 80\n",
-      "training with PCA transform...\n",
-      "variance explained 0.991458741216\n",
-      "training with LDA transform...\n",
-      "variance explained 0.942657629903\n",
-      "transform test data...\n",
-      "mapping chr\n",
-      "training with PCA transform...\n",
-      "variance explained 1.0\n",
-      "70 120\n",
-      "training with PCA transform...\n",
-      "variance explained 0.990503308525\n",
-      "training with LDA transform...\n",
-      "variance explained 0.954607427999\n",
-      "transform test data...\n"
+      "training with NMF transform...\n"
      ]
     }
    ],
    "source": [
     "print \"mapping...\"\n",
-    "_, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99)\n",
-    "mapper.write_output([], [], ldadata_list, [], [], Y, Yaudio)"
+    "#_, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99)\n",
+    "#mapper.write_output([], [], ldadata_list, [], [], Y, Yaudio)\n",
+    "data_list, pcadata_list, ldadata_list, nmfdata_list, ssnmfdata_list, classlabs, audiolabs = mapper.map_and_average_frames(min_variance=0.99)\n",
+    "mapper.write_output(data_list, pcadata_list, ldadata_list, nmfdata_list, ssnmfdata_list, classlabs, audiolabs)"
    ]
   },
   {