Mercurial > hg > plosone_underreview
comparison notebooks/results_for_30_seconds.ipynb @ 71:04fc6e809a42 branch-tests
notebooks
author | mpanteli <m.x.panteli@gmail.com> |
---|---|
date | Fri, 22 Sep 2017 18:03:41 +0100 |
parents | 9b10b688c2ac |
children | 9e526f7c9715 |
comparison
equal
deleted
inserted
replaced
65:9b10b688c2ac | 71:04fc6e809a42 |
---|---|
1 { | 1 { |
2 "cells": [ | 2 "cells": [ |
3 { | 3 { |
4 "cell_type": "code", | 4 "cell_type": "code", |
5 "execution_count": 36, | 5 "execution_count": 1, |
6 "metadata": {}, | 6 "metadata": {}, |
7 "outputs": [ | 7 "outputs": [ |
8 { | 8 { |
9 "name": "stdout", | 9 "name": "stderr", |
10 "output_type": "stream", | 10 "output_type": "stream", |
11 "text": [ | 11 "text": [ |
12 "The autoreload extension is already loaded. To reload it, use:\n", | 12 "/homes/mp305/anaconda/lib/python2.7/site-packages/librosa/core/audio.py:33: UserWarning: Could not import scikits.samplerate. Falling back to scipy.signal\n", |
13 " %reload_ext autoreload\n" | 13 " warnings.warn('Could not import scikits.samplerate. '\n" |
14 ] | 14 ] |
15 } | 15 } |
16 ], | 16 ], |
17 "source": [ | 17 "source": [ |
18 "import numpy as np\n", | 18 "import numpy as np\n", |
85 "print np.array_equal(np.unique(testset[1]), np.unique(trainset[1]))" | 85 "print np.array_equal(np.unique(testset[1]), np.unique(trainset[1]))" |
86 ] | 86 ] |
87 }, | 87 }, |
88 { | 88 { |
89 "cell_type": "code", | 89 "cell_type": "code", |
90 "execution_count": 37, | 90 "execution_count": 3, |
91 "metadata": {}, | 91 "metadata": {}, |
92 "outputs": [ | 92 "outputs": [ |
93 { | 93 { |
94 "name": "stdout", | 94 "name": "stdout", |
95 "output_type": "stream", | 95 "output_type": "stream", |
121 " pickle.dump(testset, f)" | 121 " pickle.dump(testset, f)" |
122 ] | 122 ] |
123 }, | 123 }, |
124 { | 124 { |
125 "cell_type": "code", | 125 "cell_type": "code", |
126 "execution_count": 38, | 126 "execution_count": 4, |
127 "metadata": {}, | 127 "metadata": {}, |
128 "outputs": [ | 128 "outputs": [ |
129 { | 129 { |
130 "name": "stdout", | 130 "name": "stdout", |
131 "output_type": "stream", | 131 "output_type": "stream", |
132 "text": [ | 132 "text": [ |
133 "['/import/c4dm-04/mariap/train_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/val_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/test_data_melodia_8_30sec.pickle'] ['/import/c4dm-04/mariap/lda_data_melodia_8_30sec_30sec.pickle', '/import/c4dm-04/mariap/pca_data_melodia_8_30sec_30sec.pickle', '/import/c4dm-04/mariap/nmf_data_melodia_8_30sec_30sec.pickle', '/import/c4dm-04/mariap/ssnmf_data_melodia_8_30sec_30sec.pickle', '/import/c4dm-04/mariap/na_data_melodia_8_30sec_30sec.pickle']\n" | 133 "['/import/c4dm-04/mariap/train_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/val_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/test_data_melodia_8_30sec.pickle'] ['/import/c4dm-04/mariap/lda_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/pca_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/nmf_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/ssnmf_data_melodia_8_30sec.pickle', '/import/c4dm-04/mariap/na_data_melodia_8_30sec.pickle']\n" |
134 ] | 134 ] |
135 } | 135 } |
136 ], | 136 ], |
137 "source": [ | 137 "source": [ |
138 "mapper.INPUT_FILES = OUTPUT_FILES\n", | 138 "mapper.INPUT_FILES = OUTPUT_FILES\n", |
142 "print mapper.INPUT_FILES, mapper.OUTPUT_FILES" | 142 "print mapper.INPUT_FILES, mapper.OUTPUT_FILES" |
143 ] | 143 ] |
144 }, | 144 }, |
145 { | 145 { |
146 "cell_type": "code", | 146 "cell_type": "code", |
147 "execution_count": 14, | 147 "execution_count": null, |
148 "metadata": {}, | 148 "metadata": {}, |
149 "outputs": [ | 149 "outputs": [ |
150 { | 150 { |
151 "name": "stdout", | 151 "name": "stdout", |
152 "output_type": "stream", | 152 "output_type": "stream", |
156 "mapping rhy\n", | 156 "mapping rhy\n", |
157 "training with PCA transform...\n", | 157 "training with PCA transform...\n", |
158 "variance explained 1.0\n", | 158 "variance explained 1.0\n", |
159 "138 400\n", | 159 "138 400\n", |
160 "training with PCA transform...\n", | 160 "training with PCA transform...\n", |
161 "variance explained 0.989999211296\n", | 161 "variance explained 0.989994197011\n", |
162 "training with LDA transform...\n" | 162 "training with LDA transform...\n" |
163 ] | 163 ] |
164 }, | 164 }, |
165 { | 165 { |
166 "name": "stderr", | 166 "name": "stderr", |
167 "output_type": "stream", | 167 "output_type": "stream", |
168 "text": [ | 168 "text": [ |
169 "/homes/mp305/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py:526: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", | |
170 " y = column_or_1d(y, warn=True)\n", | |
169 "/homes/mp305/anaconda/lib/python2.7/site-packages/sklearn/discriminant_analysis.py:455: UserWarning: The priors do not sum to 1. Renormalizing\n", | 171 "/homes/mp305/anaconda/lib/python2.7/site-packages/sklearn/discriminant_analysis.py:455: UserWarning: The priors do not sum to 1. Renormalizing\n", |
170 " UserWarning)\n" | 172 " UserWarning)\n" |
171 ] | 173 ] |
172 }, | 174 }, |
173 { | 175 { |
174 "name": "stdout", | 176 "name": "stdout", |
175 "output_type": "stream", | 177 "output_type": "stream", |
176 "text": [ | 178 "text": [ |
177 "variance explained 1.0\n", | 179 "variance explained 1.0\n", |
180 "training with NMF transform...\n", | |
181 "reconstruction error 6.59195506061\n", | |
182 "training with SSNMF transform...\n", | |
183 "reconstruction error 25.0727210368\n", | |
178 "transform test data...\n", | 184 "transform test data...\n", |
179 "mapping mel\n", | 185 "mapping mel\n", |
180 "training with PCA transform...\n", | 186 "training with PCA transform...\n", |
181 "variance explained 1.0\n", | 187 "variance explained 1.0\n", |
182 "214 240\n", | 188 "214 240\n", |
183 "training with PCA transform...\n", | 189 "training with PCA transform...\n", |
184 "variance explained 0.990347897477\n", | 190 "variance explained 0.990347897477\n", |
185 "training with LDA transform...\n", | 191 "training with LDA transform...\n", |
186 "variance explained 1.0\n", | 192 "variance explained 1.0\n", |
187 "transform test data...\n", | 193 "training with NMF transform...\n" |
188 "mapping mfc\n", | |
189 "training with PCA transform...\n", | |
190 "variance explained 1.0\n", | |
191 "39 80\n", | |
192 "training with PCA transform...\n", | |
193 "variance explained 0.991458741216\n", | |
194 "training with LDA transform...\n", | |
195 "variance explained 0.942657629903\n", | |
196 "transform test data...\n", | |
197 "mapping chr\n", | |
198 "training with PCA transform...\n", | |
199 "variance explained 1.0\n", | |
200 "70 120\n", | |
201 "training with PCA transform...\n", | |
202 "variance explained 0.990503308525\n", | |
203 "training with LDA transform...\n", | |
204 "variance explained 0.954607427999\n", | |
205 "transform test data...\n" | |
206 ] | 194 ] |
207 } | 195 } |
208 ], | 196 ], |
209 "source": [ | 197 "source": [ |
210 "print \"mapping...\"\n", | 198 "print \"mapping...\"\n", |
211 "_, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99)\n", | 199 "#_, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99)\n", |
212 "mapper.write_output([], [], ldadata_list, [], [], Y, Yaudio)" | 200 "#mapper.write_output([], [], ldadata_list, [], [], Y, Yaudio)\n", |
201 "data_list, pcadata_list, ldadata_list, nmfdata_list, ssnmfdata_list, classlabs, audiolabs = mapper.map_and_average_frames(min_variance=0.99)\n", | |
202 "mapper.write_output(data_list, pcadata_list, ldadata_list, nmfdata_list, ssnmfdata_list, classlabs, audiolabs)" | |
213 ] | 203 ] |
214 }, | 204 }, |
215 { | 205 { |
216 "cell_type": "code", | 206 "cell_type": "code", |
217 "execution_count": 29, | 207 "execution_count": 29, |