comparison notebooks/explain_components.ipynb @ 53:7532363b9dda branch-tests

added yticks and savefig in explain components
author Maria Panteli <m.x.panteli@gmail.com>
date Mon, 18 Sep 2017 11:25:05 +0100
parents c4428589b82b
children 98cd5317e504
comparison
equal deleted inserted replaced
52:635028c5be34 53:7532363b9dda
1 { 1 {
2 "cells": [ 2 "cells": [
3 { 3 {
4 "cell_type": "code", 4 "cell_type": "code",
5 "execution_count": 1, 5 "execution_count": 2,
6 "metadata": { 6 "metadata": {
7 "collapsed": true 7 "collapsed": true
8 }, 8 },
9 "outputs": [], 9 "outputs": [],
10 "source": [ 10 "source": [
211 " plt.imshow(WW[:, :n_components], aspect='auto')\n", 211 " plt.imshow(WW[:, :n_components], aspect='auto')\n",
212 " plt.colorbar()\n", 212 " plt.colorbar()\n",
213 " plt.title('lda')\n", 213 " plt.title('lda')\n",
214 " plt.xlabel('components')\n", 214 " plt.xlabel('components')\n",
215 " plt.ylabel('features')\n", 215 " plt.ylabel('features')\n",
216 " plt.savefig('../data/lda_'+feat_labels[i]+'.pdf')\n",
216 " \n", 217 " \n",
217 " WW = ssm_feat.pca_transformer.components_.T\n", 218 " WW = ssm_feat.pca_transformer.components_.T\n",
218 " plt.figure()\n", 219 " plt.figure()\n",
219 " plt.imshow(WW[:, :n_components], aspect='auto')\n", 220 " plt.imshow(WW[:, :n_components], aspect='auto')\n",
220 " plt.colorbar()\n", 221 " plt.colorbar()\n",
221 " plt.title('pca')\n", 222 " plt.title('pca')\n",
222 " plt.xlabel('components')\n", 223 " plt.xlabel('components')\n",
223 " plt.ylabel('features')" 224 " plt.ylabel('features')\n",
225 " plt.savefig('../data/pca_'+feat_labels[i]+'.pdf')"
226 ]
227 },
228 {
229 "cell_type": "markdown",
230 "metadata": {},
231 "source": [
232 "## export figure for LDA, PCA timbral components"
233 ]
234 },
235 {
236 "cell_type": "code",
237 "execution_count": null,
238 "metadata": {
239 "collapsed": true
240 },
241 "outputs": [],
242 "source": [
243 "i = 3\n",
244 "print \"mapping \" + feat_labels[i]\n",
245 "inds = feat_inds[i]\n",
246 "ssm_feat = util_feature_learning.Transformer()\n",
247 "if min_variance is not None:\n",
248 " ssm_feat.fit_data(traindata[:, inds], trainlabels, n_components=len(inds), pca_only=True)\n",
249 " n_components = np.where(ssm_feat.pca_transformer.explained_variance_ratio_.cumsum()>min_variance)[0][0]+1\n",
250 " print n_components, len(inds)\n",
251 " ssm_feat.fit_lda_data(traindata[:, inds], trainlabels.ravel(), n_components=n_components)\n",
252 " print \"done fitting\"\n",
253 " WW = ssm_feat.lda_transformer.scalings_\n",
254 " plt.figure()\n",
255 " plt.imshow(WW[:, :n_components], aspect='auto')\n",
256 " plt.colorbar()\n",
257 " plt.title('lda')\n",
258 " plt.xlabel('components')\n",
259 " plt.ylabel('features')\n",
260 " y_loc = np.arange(10, 80, 20)\n",
261 " y_labs = ['mean(MFCC), mean(DELTA), std(MFCC), std(DELTA)']\n",
262 " plt.yticks(y_loc, y_labs, rotation='vertical')\n",
263 " plt.savefig('../data/lda_'+feat_labels[i]+'.pdf')\n",
264 "\n",
265 " WW = ssm_feat.pca_transformer.components_.T\n",
266 " plt.figure()\n",
267 " plt.imshow(WW[:, :n_components], aspect='auto')\n",
268 " plt.colorbar()\n",
269 " plt.title('pca')\n",
270 " plt.xlabel('components')\n",
271 " plt.ylabel('features')\n",
272 " y_loc = np.arange(10, 80, 20)\n",
273 " y_labs = ['mean(MFCC), mean(DELTA), std(MFCC), std(DELTA)']\n",
274 " plt.yticks(y_loc, y_labs, rotation='vertical')\n",
275 " plt.savefig('../data/pca_'+feat_labels[i]+'.pdf')"
224 ] 276 ]
225 }, 277 },
226 { 278 {
227 "cell_type": "markdown", 279 "cell_type": "markdown",
228 "metadata": {}, 280 "metadata": {},
416 "source": [ 468 "source": [
417 "classifier_WW = ssm_feat.modelLDA.scalings_\n", 469 "classifier_WW = ssm_feat.modelLDA.scalings_\n",
418 "plt.figure()\n", 470 "plt.figure()\n",
419 "plt.imshow(classifier_WW, aspect='auto')\n", 471 "plt.imshow(classifier_WW, aspect='auto')\n",
420 "feat_lens = np.array([X_list[i].shape[1] for i in range(len(X_list))])\n", 472 "feat_lens = np.array([X_list[i].shape[1] for i in range(len(X_list))])\n",
421 "plt.yticks(np.cumsum(feat_lens), ['rhy', 'mel', 'mfc', 'chr']);\n", 473 "#plt.yticks(np.cumsum(feat_lens), ['rhy', 'mel', 'mfc', 'chr']);\n",
422 "plt.colorbar()\n", 474 "plt.colorbar()\n",
423 "plt.xlabel('components')\n", 475 "plt.xlabel('components')\n",
424 "plt.ylabel('features')\n", 476 "plt.ylabel('features')\n",
477 "boundaries = np.concatenate([[0], np.cumsum(feat_lens)])\n",
478 "y_loc = np.diff(boundaries) / 2.0 + boundaries[:-1]\n",
479 "y_labs = ['rhythm', 'melody', 'timbre', 'harmony']\n",
480 "plt.yticks(y_loc, y_labs, rotation='vertical')\n",
481 "plt.savefig('../data/pca_'+feat_labels[i]+'.pdf')\n",
482 "\n",
425 "\n", 483 "\n",
426 "classifier_WW = ssm_feat.modelSVM.support_vectors_.T\n", 484 "classifier_WW = ssm_feat.modelSVM.support_vectors_.T\n",
427 "plt.figure()\n", 485 "plt.figure()\n",
428 "plt.imshow(classifier_WW, aspect='auto')\n", 486 "plt.imshow(classifier_WW, aspect='auto')\n",
429 "feat_lens = np.array([X_list[i].shape[1] for i in range(len(X_list))])\n", 487 "feat_lens = np.array([X_list[i].shape[1] for i in range(len(X_list))])\n",
548 "file_extension": ".py", 606 "file_extension": ".py",
549 "mimetype": "text/x-python", 607 "mimetype": "text/x-python",
550 "name": "python", 608 "name": "python",
551 "nbconvert_exporter": "python", 609 "nbconvert_exporter": "python",
552 "pygments_lexer": "ipython2", 610 "pygments_lexer": "ipython2",
553 "version": "2.7.11" 611 "version": "2.7.12"
554 } 612 }
555 }, 613 },
556 "nbformat": 4, 614 "nbformat": 4,
557 "nbformat_minor": 1 615 "nbformat_minor": 1
558 } 616 }