comparison notebooks/test_hubness.ipynb @ 41:57f53b0d1eaa branch-tests

fixed crashed notebook
author Maria Panteli <m.x.panteli@gmail.com>
date Fri, 15 Sep 2017 12:27:11 +0100
parents 03ff14ba9fa2
children 90f8a2ea6f6f
comparison
equal deleted inserted replaced
40:e6e10013e11c 41:57f53b0d1eaa
1 { 1 {
2 "cells": [ 2 "cells": [
3 { 3 {
4 "cell_type": "code", 4 "cell_type": "code",
5 "execution_count": 2, 5 "execution_count": 1,
6 "metadata": { 6 "metadata": {
7 "collapsed": true 7 "collapsed": true
8 }, 8 },
9 "outputs": [], 9 "outputs": [],
10 "source": [ 10 "source": [
25 "import scripts.utils_spatial as utils_spatial" 25 "import scripts.utils_spatial as utils_spatial"
26 ] 26 ]
27 }, 27 },
28 { 28 {
29 "cell_type": "code", 29 "cell_type": "code",
30 "execution_count": 3, 30 "execution_count": 2,
31 "metadata": { 31 "metadata": {},
32 "collapsed": false 32 "outputs": [
33 }, 33 {
34 "outputs": [ 34 "name": "stderr",
35 "output_type": "stream",
36 "text": [
37 "/homes/mp305/anaconda/lib/python2.7/site-packages/pysal/weights/weights.py:189: UserWarning: There are 21 disconnected observations\n",
38 " warnings.warn(\"There are %d disconnected observations\" % ni)\n",
39 "/homes/mp305/anaconda/lib/python2.7/site-packages/pysal/weights/weights.py:190: UserWarning: Island ids: 3, 6, 26, 35, 39, 45, 52, 61, 62, 66, 77, 85, 94, 97, 98, 102, 103, 107, 110, 120, 121\n",
40 " warnings.warn(\"Island ids: %s\" % ', '.join(str(island) for island in self.islands))\n"
41 ]
42 },
35 { 43 {
36 "name": "stdout", 44 "name": "stdout",
37 "output_type": "stream", 45 "output_type": "stream",
38 "text": [ 46 "text": [
39 "WARNING: there are 21 disconnected observations\n",
40 "Island ids: [3, 6, 26, 35, 39, 45, 52, 61, 62, 66, 77, 85, 94, 97, 98, 102, 103, 107, 110, 120, 121]\n",
41 "Antigua and Barbuda\n", 47 "Antigua and Barbuda\n",
42 "Australia\n", 48 "Australia\n",
43 "Cuba\n", 49 "Cuba\n",
44 "Fiji\n", 50 "Fiji\n",
45 "French Polynesia\n", 51 "French Polynesia\n",
75 ] 81 ]
76 }, 82 },
77 { 83 {
78 "cell_type": "code", 84 "cell_type": "code",
79 "execution_count": 3, 85 "execution_count": 3,
80 "metadata": { 86 "metadata": {},
81 "collapsed": false
82 },
83 "outputs": [ 87 "outputs": [
84 { 88 {
85 "data": { 89 "data": {
86 "text/plain": [ 90 "text/plain": [
87 "(8200, 380)" 91 "(8200, 380)"
108 ] 112 ]
109 }, 113 },
110 { 114 {
111 "cell_type": "code", 115 "cell_type": "code",
112 "execution_count": 5, 116 "execution_count": 5,
113 "collapsed": false
114 },
115 "metadata": {}, 117 "metadata": {},
116 "outputs": [ 118 "outputs": [
117 { 119 {
118 "data": { 120 "data": {
119 "text/plain": [ 121 "text/plain": [
130 ] 132 ]
131 }, 133 },
132 { 134 {
133 "cell_type": "code", 135 "cell_type": "code",
134 "execution_count": 6, 136 "execution_count": 6,
135 "collapsed": false
136 },
137 "metadata": {}, 137 "metadata": {},
138 "outputs": [ 138 "outputs": [
139 { 139 {
140 "data": { 140 "data": {
141 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEACAYAAAB78OvLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGWtJREFUeJzt3W2sXdV95/HvDwyUPIwd05F5sCFWa6Q4StrADM50WvUy\nJGCiCniRgKsJeBKrL0pnYPqiE8xIYKtRO54KUaoRRGrzYFCDQdASoqBgB7iaSiNwEiClIYzNqJ7B\nl9pEBpO0o05t8Z8XZ128ubm2r303vvccfz/SkddZe6919jpczu/svfbeJ1WFJEl9OGWuN0CSNDoM\nFUlSbwwVSVJvDBVJUm8MFUlSbwwVSVJvZhQqSRYleSjJj5K8mGRVksVJtiXZkWRrkkWd9dcn2Znk\npSSXd+ovTvJCW3ZXp/6MJA+0+qeTXNBZtra9xo4kN3Tqlyd5prXZkuS02b8dkqTZmOmeyl3AY1X1\nIeCjwEvALcC2qroQeKI9J8lK4DpgJbAauDtJWj/3AOuqagWwIsnqVr8O2Nfq7wQ2tb4WA7cBl7TH\n7UkWtjabgDtamzdaH5KkOXTUUGkf4r9WVV8BqKqDVfUmcBWwua22Gbimla8G7q+qA1W1C3gZWJXk\nHOD9VbW9rXdvp023r4eBy1r5CmBrVe2vqv3ANuDKFlKXAg9N8/qSpDkykz2V5cCPk3w1ybNJ/jTJ\ne4ElVbW3rbMXWNLK5wK7O+13A+dNUz/R6mn/vgKD0ALeTHLWEfpaDOyvqrem6UuSNEdmEioLgIuA\nu6vqIuAfaIe6JtXgXi8n6n4v3ldGkuapBTNYZzewu6q+254/BKwH9iQ5u6r2tENbr7XlE8CyTvul\nrY+JVp5aP9nmfODVJAuAhVW1L8kEMNZpswx4EngdWJTklLa3srT18Q5JDCBJOkZVlaOvNb2j7qlU\n1R7glSQXtqpPAD8EvgmsbXVrgUda+VFgTZLTkywHVgDbWz8/aWeOBbge+EanzWRfn2Yw8Q+wFbi8\nnX32AeCTwONtz+gp4DPTvP7U7R/Jx+233z7n2+D4HJ/jG73HbM1kTwXgPwB/nuR04H8BnwNOBR5M\nsg7YBVzbPsRfTPIg8CJwELixDm3pjcDXgDMZnE327Vb/ZeC+JDuBfcCa1tfrSX4fmNxL2liDCXuA\nLwBbknwReLb1IUmaQzMKlar6AfAvp1n0icOs/wfAH0xT/33gI9PU/z9aKE2z7KvAV6ep/1tg1RE3\nXBw6m3ugj28iknQ4XlE/pMbGxo5h7RN5HkU/jm18w8fxDbdRH99sZJS/uSapUR7fTAz2VCbfg7in\nIumIklDv5kS9JEkzNdOJeo2I7hyLey2S+uaeykln+OZXJA0PQ0WS1BtDRZLUG0NFktQbQ0WS1BvP\n/hpBU6+il6QTxT2VkeVZXpJOPENFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS\n1BuvqD+J+dsqkvrmnspJzavuJfXLUJEk9cZQkST1xlCRJPXGUJEk9cZQkST1xlCRJPXGUJEk9WZG\noZJkV5K/TvJcku2tbnGSbUl2JNmaZFFn/fVJdiZ5KcnlnfqLk7zQlt3VqT8jyQOt/ukkF3SWrW2v\nsSPJDZ365UmeaW22JDlttm+GJGl2ZrqnUsBYVX2sqi5pdbcA26rqQuCJ9pwkK4HrgJXAauDuHLp0\n+x5gXVWtAFYkWd3q1wH7Wv2dwKbW12LgNuCS9rg9ycLWZhNwR2vzRutDkjSHjuXwV6Y8vwrY3Mqb\ngWta+Wrg/qo6UFW7gJeBVUnOAd5fVdvbevd22nT7ehi4rJWvALZW1f6q2g9sA65sIXUp8NA0ry9J\nmiPHsqfynSTfS/JbrW5JVe1t5b3AklY+F9jdabsbOG+a+olWT/v3FYCqOgi8meSsI/S1GNhfVW9N\n05ckaY7M9IaS/7qq/i7JPwe2JXmpu7CqKsmJuomUN6uSpHlqRqFSVX/X/v1xkr9kML+xN8nZVbWn\nHdp6ra0+ASzrNF/KYA9jopWn1k+2OR94NckCYGFV7UsyAYx12iwDngReBxYlOaXtrSxtffyMDRs2\nvF0eGxtjbGxsutWGXveOw5I0U+Pj44yPj/fWX452y/Mk7wFOraqfJnkvsBXYCHyCweT6piS3AIuq\n6pY2Uf91BsFzHvAd4Bfb3swzwE3AduBbwJ9U1beT3Ah8pKp+O8ka4JqqWtMm6r8HXMRgTuf7wEVV\ntT/Jg8DDVfVAki8Bz1fVl6Zse50st3QfhMrkWI+9fLK8T5KOLAlVddzfUmcSKsuBv2xPFwB/XlV/\n2D7wH2Swh7ELuLZNppPkVuDzwEHg5qp6vNVfDHwNOBN4rKpuavVnAPcBHwP2AWvaJD9JPgfc2l7/\ni1W1ubNdWxjMrzwLfLaqDkzZdkPFUJF0DN71UBlmhsrMyyfL+yTpyGYbKl5RL0nqjaEiSeqNoSJJ\n6s1Mr1PRiOuekuz8iqTj5Z6KmsLrSiXNlqEiSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIknqjaEi\nSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIknq\njaEiSeqNoSJJ6o2hIknqjaEiSerNgrneAM0/Sd4uV9UcbomkYeOeiqZR7SFJx2ZGoZLk1CTPJflm\ne744ybYkO5JsTbKos+76JDuTvJTk8k79xUleaMvu6tSfkeSBVv90kgs6y9a219iR5IZO/fIkz7Q2\nW5KcNts3QpI0ezPdU7kZeJFDX19vAbZV1YXAE+05SVYC1wErgdXA3Tl0LOUeYF1VrQBWJFnd6tcB\n+1r9ncCm1tdi4Dbgkva4PcnC1mYTcEdr80brQ5I0x44aKkmWAp8C/gyYDIirgM2tvBm4ppWvBu6v\nqgNVtQt4GViV5Bzg/VW1va13b6dNt6+Hgcta+Qpga1Xtr6r9wDbgyhZSlwIPTfP6kqQ5NJM9lTuB\n3wPe6tQtqaq9rbwXWNLK5wK7O+vtBs6bpn6i1dP+fQWgqg4CbyY56wh9LQb2V9Vb0/R1Ukny9kOS\n5oMjnv2V5DeA16rquSRj061TVZXkRM3qHvPrbNiw4e3y2NgYY2NjPW7OfDD5lhgsko7d+Pg44+Pj\nvfV3tFOKfwW4KsmngJ8D/lmS+4C9Sc6uqj3t0NZrbf0JYFmn/VIGexgTrTy1frLN+cCrSRYAC6tq\nX5IJYKzTZhnwJPA6sCjJKW1vZWnrY1rdUJEkvdPUL9sbN26cVX9HPPxVVbdW1bKqWg6sAZ6squuB\nR4G1bbW1wCOt/CiwJsnpSZYDK4DtVbUH+EmSVW1O5HrgG502k319msHEP8BW4PIki5J8APgk8HgN\nLpx4CvjMNK8vSZpDx3rx4+Sxlv8CPJhkHbALuBagql5M8iCDM8UOAjfWoavnbgS+BpwJPFZV3271\nXwbuS7IT2McgvKiq15P8PvDdtt7GNmEP8AVgS5IvAs+2PiRJcyyjfMV0khrx8fHOOZX+y6P8/kn6\nWUmoquOepPWKeklSbwwVSVJvDBVJUm8MFUlSbwwVSVJvDBVJUm8MFUlSbwwVSVJvDBVJUm8MFUlS\nbwwVSVJvDBVJUm8MFUlSb4711vc6yXR/qtg7Fks6GvdUdBTFcfyKs6STlKEiSeqNoSJJ6o2hIknq\njaEiSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIknqjaEiSerNEUMlyc8l\neSbJ80leTPKHrX5xkm1JdiTZmmRRp836JDuTvJTk8k79xUleaMvu6tSfkeSBVv90kgs6y9a219iR\n5IZO/fK2XTuTbElyWl9viCTp+B0xVKrqH4FLq+qXgY8Clyb5VeAWYFtVXQg80Z6TZCVwHbASWA3c\nnUM/yHEPsK6qVgArkqxu9euAfa3+TmBT62sxcBtwSXvcnmRha7MJuKO1eaP1IUmaY0c9/FVV/7cV\nTwdOZfAhfhWwudVvBq5p5auB+6vqQFXtAl4GViU5B3h/VW1v693badPt62Hgsla+AthaVfuraj+w\nDbiyhdSlwEPTvL4kaQ4dNVSSnJLkeWAv8FRV/RBYUlV72yp7gSWtfC6wu9N8N3DeNPUTrZ727ysA\nVXUQeDPJWUfoazGwv6remqYvSdIcOurPCbcP719uh54eT3LplOWV5ET9NOAxv86GDRveLo+NjTE2\nNtbj5kjScBsfH2d8fLy3/mb8G/VV9WaSbwEXA3uTnF1Ve9qhrdfaahPAsk6zpQz2MCZaeWr9ZJvz\ngVeTLAAWVtW+JBPAWKfNMuBJ4HVgUZJTWuAtbX1MqxsqkqR3mvple+PGjbPq72hnf/385JldSc4E\nPgk8BzwKrG2rrQUeaeVHgTVJTk+yHFgBbK+qPcBPkqxqcyLXA9/otJns69MMJv4BtgKXJ1mU5APt\ntR+vqgKeAj4zzetLkuZQBp/Rh1mYfITBRPgp7XFfVf1ROzPrQQZ7GLuAa9tkOkluBT4PHARurqrH\nW/3FwNeAM4HHquqmVn8GcB/wMWAfsKZN8pPkc8CtbXO+WFWbW/1yYAuD+ZVngc9W1YFptr+ONL5h\ndOhkukmT48sJKHdedcTeV0kDSaiqqR80M28/yh8OoxsqJzJIpi+P2vsqaWC2oeIV9ZKk3hgqkqTe\nGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3hgq\nkqTeGCqSpN4YKpKk3hgqkqTeLJjrDdBw6v6ssb8CKWmSeyo6TsWhnxeWpAFDRZLUG0NFktQbQ0WS\n1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1JujhkqSZUmeSvLDJH+T5KZWvzjJtiQ7kmxN\nsqjTZn2SnUleSnJ5p/7iJC+0ZXd16s9I8kCrfzrJBZ1la9tr7EhyQ6d+eZJnWpstSU7r4w2RJB2/\nmeypHAB+t6o+DHwc+J0kHwJuAbZV1YXAE+05SVYC1wErgdXA3Tl0o6h7gHVVtQJYkWR1q18H7Gv1\ndwKbWl+LgduAS9rj9iQLW5tNwB2tzRutD0nSHDpqqFTVnqp6vpX/HvgRcB5wFbC5rbYZuKaVrwbu\nr6oDVbULeBlYleQc4P1Vtb2td2+nTbevh4HLWvkKYGtV7a+q/cA24MoWUpcCD03z+pKkOXJMcypJ\nPgh8DHgGWFJVe9uivcCSVj4X2N1ptptBCE2tn2j1tH9fAaiqg8CbSc46Ql+Lgf1V9dY0fUmS5siM\nb32f5H0M9iJurqqfTrn1eSU5UbesPabX2bBhw9vlsbExxsbGet4cSRpe4+PjjI+P99bfjEKlTYI/\nDNxXVY+06r1Jzq6qPe3Q1mutfgJY1mm+lMEexkQrT62fbHM+8GqSBcDCqtqXZAIY67RZBjwJvA4s\nSnJK21tZ2vr4Gd1Q0bvD31aRhtfUL9sbN26cVX8zOfsrwJeBF6vqjzuLHgXWtvJa4JFO/ZokpydZ\nDqwAtlfVHuAnSVa1Pq8HvjFNX59mMPEPsBW4PMmiJB8APgk8XoNPrqeAz0zz+jrh/G0VSQM52jfL\nJL8K/Hfgrzn0ybEe2A48yGAPYxdwbZtMJ8mtwOeBgwwOlz3e6i8GvgacCTxWVZOnJ58B3MdgvmYf\nsKZN8pPkc8Ct7XW/WFWbW/1yYAuD+ZVngc9W1YEp216j9s15kMeTY5p/5VF7v6WTTRKqKkdf8zDt\nR/lDYFRCpXt4aWDuw8NQkUbTbEPFK+qHhoeYJM1/hookqTeGiiSpN4aKJKk3hookqTeGiiSpN4aK\nJKk3hookqTeGiiSpNzO+S7E0E95cUjq5uaeinnnlv3QyM1QkSb0xVCRJvTFUJEm9MVQkSb0xVCRJ\nvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb3x3l9613gfMOnk456K3kXeB0w62RgqkqTeGCqSpN4Y\nKpKk3hgqkqTeGCqSpN4cNVSSfCXJ3iQvdOoWJ9mWZEeSrUkWdZatT7IzyUtJLu/UX5zkhbbsrk79\nGUkeaPVPJ7mgs2xte40dSW7o1C9P8kxrsyXJabN9IyRJszeTPZWvAqun1N0CbKuqC4En2nOSrASu\nA1a2Nnfn0MUK9wDrqmoFsCLJZJ/rgH2t/k5gU+trMXAbcEl73J5kYWuzCbijtXmj9TFSkrz9kKRh\ncdRQqaq/YvDB3XUVsLmVNwPXtPLVwP1VdaCqdgEvA6uSnAO8v6q2t/Xu7bTp9vUwcFkrXwFsrar9\nVbUf2AZc2ULqUuChaV5/xHidh6ThcrxzKkuqam8r7wWWtPK5wO7OeruB86apn2j1tH9fAaiqg8Cb\nSc46Ql+Lgf1V9dY0fWmecs9LOjnMeqK+BvffOFFfp/3aPrTc65JOBsd776+9Sc6uqj3t0NZrrX4C\nWNZZbymDPYyJVp5aP9nmfODVJAuAhVW1L8kEMNZpswx4EngdWJTklLa3srT1Ma0NGza8XR4bG2Ns\nbOxwq0rSSWd8fJzx8fHe+stMbvSX5IPAN6vqI+35f2Uwub4pyS3Aoqq6pU3Uf53BxPp5wHeAX6yq\nSvIMcBOwHfgW8CdV9e0kNwIfqarfTrIGuKaq1rSJ+u8BFwEBvg9cVFX7kzwIPFxVDyT5EvB8VX1p\nmu2uYb2R4eAw0eS2j1Z5WP+bSCeDJFTVcR+nPmqoJLkf+HXg5xnMn9wGfAN4kMEexi7g2jaZTpJb\ngc8DB4Gbq+rxVn8x8DXgTOCxqrqp1Z8B3Ad8DNgHrGmT/CT5HHBr25QvVtXmVr8c2MJgfuVZ4LNV\ndWCabTdU5mF5WP+bSCeDdz1UhpmhMj/Lw/rfRDoZzDZUvKJektQbQ0WS1Bt/+VEnnL8IKY0u91Q0\nB7xmRRpVhookqTeGiiSpN4aKJKk3hookqTee/aU55Zlg0mhxT0VzzDPBpFFiqEiSeuPhr3nEH7CS\nNOwMlXmnexPGk4vzK9Lw8/CX5hHnV6RhZ6hIknpjqEiSeuOciuYl51ek4eSeiuYp51ekYWSoSJJ6\nY6hIknrjnIrmPedXpOHhnoqGgPMr0rAwVCRJvfHw1xzzfl/HxkNh0vzmnsq84OGdmfO9kuYz91Q0\ntNxrkeYfQ0VD7NAdnQ93GNGwkU4sQ0UjovuTAdOHjQEjvfuGek4lyeokLyXZmeQLc709mo8OzcEk\nefsh6d0xtKGS5FTgvwGrgZXAbyb50Nxu1cz08+E23tfmzFPj70Kf8ydgxsfH5+R1TxTHd/Ia2lAB\nLgFerqpdVXUA2AJcPcfbdAxmexbTeE/bMV+Nv8v9z23AjPqHkuM7eQ3znMp5wCud57uBVVNX6h5H\n97CHpnf0Cf8Z9eKcjTTUoTKj/4NPOWWwM7Zr1y4uuOCCd3WDjsRAGxbTT/jPpHys/403btx4/Jt5\nGDMNtiNtq+Go2ciw/gEl+TiwoapWt+frgbeqalNnneEcnCTNoao67m/BwxwqC4D/CVwGvApsB36z\nqn40pxsmSSexoT38VVUHk/x74HHgVODLBookza2h3VORJM0/w3xK8WGN2kWRSZYleSrJD5P8TZKb\nWv3iJNuS7EiyNcmiud7W45Xk1CTPJflmez5KY1uU5KEkP0ryYpJVIza+9e1v84UkX09yxjCPL8lX\nkuxN8kKn7rDjaePf2T5zLp+brZ65w4zvj9rf5w+S/EWShZ1lxzS+kQuVYb4o8ggOAL9bVR8GPg78\nThvTLcC2qroQeKI9H1Y3Ay9y6HSqURrbXcBjVfUh4KPAS4zI+JJ8EPgt4KKq+giDQ9FrGO7xfZXB\n50fXtONJshK4jsFnzWrg7iTz/XN1uvFtBT5cVb8E7ADWw/GNb74P/ngM+UWRP6uq9lTV863898CP\nGFyncxWwua22GbhmbrZwdpIsBT4F/BmD83RhdMa2EPi1qvoKDOYCq+pNRmR8wE8YfOl5Tzt55j0M\nTpwZ2vFV1V8Bb0ypPtx4rgbur6oDVbULeJnBZ9C8Nd34qmpbVb3Vnj4DLG3lYx7fKIbKdBdFnjdH\n29K79s3wYwz+wy+pqr1t0V5gyRxt1mzdCfwe8FanblTGthz4cZKvJnk2yZ8meS8jMr6qeh24A/g/\nDMJkf1VtY0TG13G48ZzL4DNm0ih83nweeKyVj3l8oxgqI3vmQZL3AQ8DN1fVT7vLanDGxdCNPclv\nAK9V1XMc2kt5h2EdW7MAuAi4u6ouAv6BKYeChnl8SX4B+I/ABxl8AL0vyWe76wzz+KYzg/EM7ViT\n/Gfgn6rq60dY7YjjG8VQmQCWdZ4v451JO5SSnMYgUO6rqkda9d4kZ7fl5wCvzdX2zcKvAFcl+Vvg\nfuDfJLmP0RgbDP72dlfVd9vzhxiEzJ4RGd+/AP5HVe2rqoPAXwD/itEZ36TD/T1O/bxZ2uqGTpJ/\nx+Aw9L/tVB/z+EYxVL4HrEjywSSnM5hkenSOt2lWMrinxpeBF6vqjzuLHgXWtvJa4JGpbee7qrq1\nqpZV1XIGE7xPVtX1jMDYYDAfBryS5MJW9Qngh8A3GYHxMTjp4ONJzmx/p59gcMLFqIxv0uH+Hh8F\n1iQ5PclyYAWDC7GHSpLVDA5BX11V/9hZdOzjq6qRewBXMrja/mVg/VxvTw/j+VUG8w3PA8+1x2pg\nMfAdBmdrbAUWzfW2znKcvw482sojMzbgl4DvAj9g8E1+4YiN7z8xCMoXGExinzbM42Owx/wq8E8M\n5mc/d6TxALe2z5qXgCvmevuPY3yfB3YC/7vz+XL38Y7Pix8lSb0ZxcNfkqQ5YqhIknpjqEiSemOo\nSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknrz/wF0zsvts73EjAAAAABJRU5ErkJggg==\n", 141 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEACAYAAAB78OvLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGWtJREFUeJzt3W2sXdV95/HvDwyUPIwd05F5sCFWa6Q4StrADM50WvUy\nJGCiCniRgKsJeBKrL0pnYPqiE8xIYKtRO54KUaoRRGrzYFCDQdASoqBgB7iaSiNwEiClIYzNqJ7B\nl9pEBpO0o05t8Z8XZ128ubm2r303vvccfz/SkddZe6919jpczu/svfbeJ1WFJEl9OGWuN0CSNDoM\nFUlSbwwVSVJvDBVJUm8MFUlSbwwVSVJvZhQqSRYleSjJj5K8mGRVksVJtiXZkWRrkkWd9dcn2Znk\npSSXd+ovTvJCW3ZXp/6MJA+0+qeTXNBZtra9xo4kN3Tqlyd5prXZkuS02b8dkqTZmOmeyl3AY1X1\nIeCjwEvALcC2qroQeKI9J8lK4DpgJbAauDtJWj/3AOuqagWwIsnqVr8O2Nfq7wQ2tb4WA7cBl7TH\n7UkWtjabgDtamzdaH5KkOXTUUGkf4r9WVV8BqKqDVfUmcBWwua22Gbimla8G7q+qA1W1C3gZWJXk\nHOD9VbW9rXdvp023r4eBy1r5CmBrVe2vqv3ANuDKFlKXAg9N8/qSpDkykz2V5cCPk3w1ybNJ/jTJ\ne4ElVbW3rbMXWNLK5wK7O+13A+dNUz/R6mn/vgKD0ALeTHLWEfpaDOyvqrem6UuSNEdmEioLgIuA\nu6vqIuAfaIe6JtXgXi8n6n4v3ldGkuapBTNYZzewu6q+254/BKwH9iQ5u6r2tENbr7XlE8CyTvul\nrY+JVp5aP9nmfODVJAuAhVW1L8kEMNZpswx4EngdWJTklLa3srT18Q5JDCBJOkZVlaOvNb2j7qlU\n1R7glSQXtqpPAD8EvgmsbXVrgUda+VFgTZLTkywHVgDbWz8/aWeOBbge+EanzWRfn2Yw8Q+wFbi8\nnX32AeCTwONtz+gp4DPTvP7U7R/Jx+233z7n2+D4HJ/jG73HbM1kTwXgPwB/nuR04H8BnwNOBR5M\nsg7YBVzbPsRfTPIg8CJwELixDm3pjcDXgDMZnE327Vb/ZeC+JDuBfcCa1tfrSX4fmNxL2liDCXuA\nLwBbknwReLb1IUmaQzMKlar6AfAvp1n0icOs/wfAH0xT/33gI9PU/z9aKE2z7KvAV6ep/1tg1RE3\nXBw6m3ugj28iknQ4XlE/pMbGxo5h7RN5HkU/jm18w8fxDbdRH99sZJS/uSapUR7fTAz2VCbfg7in\nIumIklDv5kS9JEkzNdOJeo2I7hyLey2S+uaeykln+OZXJA0PQ0WS1BtDRZLUG0NFktQbQ0WS1BvP\n/hpBU6+il6QTxT2VkeVZXpJOPENFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS\n1BuvqD+J+dsqkvrmnspJzavuJfXLUJEk9cZQkST1xlCRJPXGUJEk9cZQkST1xlCRJPXGUJEk9WZG\noZJkV5K/TvJcku2tbnGSbUl2JNmaZFFn/fVJdiZ5KcnlnfqLk7zQlt3VqT8jyQOt/ukkF3SWrW2v\nsSPJDZ365UmeaW22JDlttm+GJGl2ZrqnUsBYVX2sqi5pdbcA26rqQuCJ9pwkK4HrgJXAauDuHLp0\n+x5gXVWtAFYkWd3q1wH7Wv2dwKbW12LgNuCS9rg9ycLWZhNwR2vzRutDkjSHjuXwV6Y8vwrY3Mqb\ngWta+Wrg/qo6UFW7gJeBVUnOAd5fVdvbevd22nT7ehi4rJWvALZW1f6q2g9sA65sIXUp8NA0ry9J\nmiPHsqfynSTfS/JbrW5JVe1t5b3AklY+F9jdabsbOG+a+olWT/v3FYCqOgi8meSsI/S1GNhfVW9N\n05ckaY7M9IaS/7qq/i7JPwe2JXmpu7CqKsmJuomUN6uSpHlqRqFSVX/X/v1xkr9kML+xN8nZVbWn\nHdp6ra0+ASzrNF/KYA9jopWn1k+2OR94NckCYGFV7UsyAYx12iwDngReBxYlOaXtrSxtffyMDRs2\nvF0eGxtjbGxsutWGXveOw5I0U+Pj44yPj/fWX452y/Mk7wFOraqfJnkvsBXYCHyCweT6piS3AIuq\n6pY2Uf91BsFzHvAd4Bfb3swzwE3AduBbwJ9U1beT3Ah8pKp+O8ka4JqqWtMm6r8HXMRgTuf7wEVV\ntT/Jg8DDVfVAki8Bz1fVl6Zse50st3QfhMrkWI+9fLK8T5KOLAlVddzfUmcSKsuBv2xPFwB/XlV/\n2D7wH2Swh7ELuLZNppPkVuDzwEHg5qp6vNVfDHwNOBN4rKpuavVnAPcBHwP2AWvaJD9JPgfc2l7/\ni1W1ubNdWxjMrzwLfLaqDkzZdkPFUJF0DN71UBlmhsrMyyfL+yTpyGYbKl5RL0nqjaEiSeqNoSJJ\n6s1Mr1PRiOuekuz8iqTj5Z6KmsLrSiXNlqEiSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIknqjaEi\nSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIknq\njaEiSeqNoSJJ6o2hIknqjaEiSerNgrneAM0/Sd4uV9UcbomkYeOeiqZR7SFJx2ZGoZLk1CTPJflm\ne744ybYkO5JsTbKos+76JDuTvJTk8k79xUleaMvu6tSfkeSBVv90kgs6y9a219iR5IZO/fIkz7Q2\nW5KcNts3QpI0ezPdU7kZeJFDX19vAbZV1YXAE+05SVYC1wErgdXA3Tl0LOUeYF1VrQBWJFnd6tcB\n+1r9ncCm1tdi4Dbgkva4PcnC1mYTcEdr80brQ5I0x44aKkmWAp8C/gyYDIirgM2tvBm4ppWvBu6v\nqgNVtQt4GViV5Bzg/VW1va13b6dNt6+Hgcta+Qpga1Xtr6r9wDbgyhZSlwIPTfP6kqQ5NJM9lTuB\n3wPe6tQtqaq9rbwXWNLK5wK7O+vtBs6bpn6i1dP+fQWgqg4CbyY56wh9LQb2V9Vb0/R1Ukny9kOS\n5oMjnv2V5DeA16rquSRj061TVZXkRM3qHvPrbNiw4e3y2NgYY2NjPW7OfDD5lhgsko7d+Pg44+Pj\nvfV3tFOKfwW4KsmngJ8D/lmS+4C9Sc6uqj3t0NZrbf0JYFmn/VIGexgTrTy1frLN+cCrSRYAC6tq\nX5IJYKzTZhnwJPA6sCjJKW1vZWnrY1rdUJEkvdPUL9sbN26cVX9HPPxVVbdW1bKqWg6sAZ6squuB\nR4G1bbW1wCOt/CiwJsnpSZYDK4DtVbUH+EmSVW1O5HrgG502k319msHEP8BW4PIki5J8APgk8HgN\nLpx4CvjMNK8vSZpDx3rx4+Sxlv8CPJhkHbALuBagql5M8iCDM8UOAjfWoavnbgS+BpwJPFZV3271\nXwbuS7IT2McgvKiq15P8PvDdtt7GNmEP8AVgS5IvAs+2PiRJcyyjfMV0khrx8fHOOZX+y6P8/kn6\nWUmoquOepPWKeklSbwwVSVJvDBVJUm8MFUlSbwwVSVJvDBVJUm8MFUlSbwwVSVJvDBVJUm8MFUlS\nbwwVSVJvDBVJUm8MFUlSb4711vc6yXR/qtg7Fks6GvdUdBTFcfyKs6STlKEiSeqNoSJJ6o2hIknq\njaEiSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIknqjaEiSeqNoSJJ6o2hIknqjaEiSerNEUMlyc8l\neSbJ80leTPKHrX5xkm1JdiTZmmRRp836JDuTvJTk8k79xUleaMvu6tSfkeSBVv90kgs6y9a219iR\n5IZO/fK2XTuTbElyWl9viCTp+B0xVKrqH4FLq+qXgY8Clyb5VeAWYFtVXQg80Z6TZCVwHbASWA3c\nnUM/yHEPsK6qVgArkqxu9euAfa3+TmBT62sxcBtwSXvcnmRha7MJuKO1eaP1IUmaY0c9/FVV/7cV\nTwdOZfAhfhWwudVvBq5p5auB+6vqQFXtAl4GViU5B3h/VW1v693badPt62Hgsla+AthaVfuraj+w\nDbiyhdSlwEPTvL4kaQ4dNVSSnJLkeWAv8FRV/RBYUlV72yp7gSWtfC6wu9N8N3DeNPUTrZ727ysA\nVXUQeDPJWUfoazGwv6remqYvSdIcOurPCbcP719uh54eT3LplOWV5ET9NOAxv86GDRveLo+NjTE2\nNtbj5kjScBsfH2d8fLy3/mb8G/VV9WaSbwEXA3uTnF1Ve9qhrdfaahPAsk6zpQz2MCZaeWr9ZJvz\ngVeTLAAWVtW+JBPAWKfNMuBJ4HVgUZJTWuAtbX1MqxsqkqR3mvple+PGjbPq72hnf/385JldSc4E\nPgk8BzwKrG2rrQUeaeVHgTVJTk+yHFgBbK+qPcBPkqxqcyLXA9/otJns69MMJv4BtgKXJ1mU5APt\ntR+vqgKeAj4zzetLkuZQBp/Rh1mYfITBRPgp7XFfVf1ROzPrQQZ7GLuAa9tkOkluBT4PHARurqrH\nW/3FwNeAM4HHquqmVn8GcB/wMWAfsKZN8pPkc8CtbXO+WFWbW/1yYAuD+ZVngc9W1YFptr+ONL5h\ndOhkukmT48sJKHdedcTeV0kDSaiqqR80M28/yh8OoxsqJzJIpi+P2vsqaWC2oeIV9ZKk3hgqkqTe\nGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3hgqkqTeGCqSpN4YKpKk3hgq\nkqTeGCqSpN4YKpKk3hgqkqTeLJjrDdBw6v6ssb8CKWmSeyo6TsWhnxeWpAFDRZLUG0NFktQbQ0WS\n1BtDRZLUG0NFktQbQ0WS1BtDRZLUG0NFktQbQ0WS1JujhkqSZUmeSvLDJH+T5KZWvzjJtiQ7kmxN\nsqjTZn2SnUleSnJ5p/7iJC+0ZXd16s9I8kCrfzrJBZ1la9tr7EhyQ6d+eZJnWpstSU7r4w2RJB2/\nmeypHAB+t6o+DHwc+J0kHwJuAbZV1YXAE+05SVYC1wErgdXA3Tl0o6h7gHVVtQJYkWR1q18H7Gv1\ndwKbWl+LgduAS9rj9iQLW5tNwB2tzRutD0nSHDpqqFTVnqp6vpX/HvgRcB5wFbC5rbYZuKaVrwbu\nr6oDVbULeBlYleQc4P1Vtb2td2+nTbevh4HLWvkKYGtV7a+q/cA24MoWUpcCD03z+pKkOXJMcypJ\nPgh8DHgGWFJVe9uivcCSVj4X2N1ptptBCE2tn2j1tH9fAaiqg8CbSc46Ql+Lgf1V9dY0fUmS5siM\nb32f5H0M9iJurqqfTrn1eSU5UbesPabX2bBhw9vlsbExxsbGet4cSRpe4+PjjI+P99bfjEKlTYI/\nDNxXVY+06r1Jzq6qPe3Q1mutfgJY1mm+lMEexkQrT62fbHM+8GqSBcDCqtqXZAIY67RZBjwJvA4s\nSnJK21tZ2vr4Gd1Q0bvD31aRhtfUL9sbN26cVX8zOfsrwJeBF6vqjzuLHgXWtvJa4JFO/ZokpydZ\nDqwAtlfVHuAnSVa1Pq8HvjFNX59mMPEPsBW4PMmiJB8APgk8XoNPrqeAz0zz+jrh/G0VSQM52jfL\nJL8K/Hfgrzn0ybEe2A48yGAPYxdwbZtMJ8mtwOeBgwwOlz3e6i8GvgacCTxWVZOnJ58B3MdgvmYf\nsKZN8pPkc8Ct7XW/WFWbW/1yYAuD+ZVngc9W1YEp216j9s15kMeTY5p/5VF7v6WTTRKqKkdf8zDt\nR/lDYFRCpXt4aWDuw8NQkUbTbEPFK+qHhoeYJM1/hookqTeGiiSpN4aKJKk3hookqTeGiiSpN4aK\nJKk3hookqTeGiiSpNzO+S7E0E95cUjq5uaeinnnlv3QyM1QkSb0xVCRJvTFUJEm9MVQkSb0xVCRJ\nvTFUJEm9MVQkSb0xVCRJvTFUJEm9MVQkSb3x3l9613gfMOnk456K3kXeB0w62RgqkqTeGCqSpN4Y\nKpKk3hgqkqTeGCqSpN4cNVSSfCXJ3iQvdOoWJ9mWZEeSrUkWdZatT7IzyUtJLu/UX5zkhbbsrk79\nGUkeaPVPJ7mgs2xte40dSW7o1C9P8kxrsyXJabN9IyRJszeTPZWvAqun1N0CbKuqC4En2nOSrASu\nA1a2Nnfn0MUK9wDrqmoFsCLJZJ/rgH2t/k5gU+trMXAbcEl73J5kYWuzCbijtXmj9TFSkrz9kKRh\ncdRQqaq/YvDB3XUVsLmVNwPXtPLVwP1VdaCqdgEvA6uSnAO8v6q2t/Xu7bTp9vUwcFkrXwFsrar9\nVbUf2AZc2ULqUuChaV5/xHidh6ThcrxzKkuqam8r7wWWtPK5wO7OeruB86apn2j1tH9fAaiqg8Cb\nSc46Ql+Lgf1V9dY0fWmecs9LOjnMeqK+BvffOFFfp/3aPrTc65JOBsd776+9Sc6uqj3t0NZrrX4C\nWNZZbymDPYyJVp5aP9nmfODVJAuAhVW1L8kEMNZpswx4EngdWJTklLa3srT1Ma0NGza8XR4bG2Ns\nbOxwq0rSSWd8fJzx8fHe+stMbvSX5IPAN6vqI+35f2Uwub4pyS3Aoqq6pU3Uf53BxPp5wHeAX6yq\nSvIMcBOwHfgW8CdV9e0kNwIfqarfTrIGuKaq1rSJ+u8BFwEBvg9cVFX7kzwIPFxVDyT5EvB8VX1p\nmu2uYb2R4eAw0eS2j1Z5WP+bSCeDJFTVcR+nPmqoJLkf+HXg5xnMn9wGfAN4kMEexi7g2jaZTpJb\ngc8DB4Gbq+rxVn8x8DXgTOCxqrqp1Z8B3Ad8DNgHrGmT/CT5HHBr25QvVtXmVr8c2MJgfuVZ4LNV\ndWCabTdU5mF5WP+bSCeDdz1UhpmhMj/Lw/rfRDoZzDZUvKJektQbQ0WS1Bt/+VEnnL8IKY0u91Q0\nB7xmRRpVhookqTeGiiSpN4aKJKk3hookqTee/aU55Zlg0mhxT0VzzDPBpFFiqEiSeuPhr3nEH7CS\nNOwMlXmnexPGk4vzK9Lw8/CX5hHnV6RhZ6hIknpjqEiSeuOciuYl51ek4eSeiuYp51ekYWSoSJJ6\nY6hIknrjnIrmPedXpOHhnoqGgPMr0rAwVCRJvfHw1xzzfl/HxkNh0vzmnsq84OGdmfO9kuYz91Q0\ntNxrkeYfQ0VD7NAdnQ93GNGwkU4sQ0UjovuTAdOHjQEjvfuGek4lyeokLyXZmeQLc709mo8OzcEk\nefsh6d0xtKGS5FTgvwGrgZXAbyb50Nxu1cz08+E23tfmzFPj70Kf8ydgxsfH5+R1TxTHd/Ia2lAB\nLgFerqpdVXUA2AJcPcfbdAxmexbTeE/bMV+Nv8v9z23AjPqHkuM7eQ3znMp5wCud57uBVVNX6h5H\n97CHpnf0Cf8Z9eKcjTTUoTKj/4NPOWWwM7Zr1y4uuOCCd3WDjsRAGxbTT/jPpHys/403btx4/Jt5\nGDMNtiNtq+Go2ciw/gEl+TiwoapWt+frgbeqalNnneEcnCTNoao67m/BwxwqC4D/CVwGvApsB36z\nqn40pxsmSSexoT38VVUHk/x74HHgVODLBookza2h3VORJM0/w3xK8WGN2kWRSZYleSrJD5P8TZKb\nWv3iJNuS7EiyNcmiud7W45Xk1CTPJflmez5KY1uU5KEkP0ryYpJVIza+9e1v84UkX09yxjCPL8lX\nkuxN8kKn7rDjaePf2T5zLp+brZ65w4zvj9rf5w+S/EWShZ1lxzS+kQuVYb4o8ggOAL9bVR8GPg78\nThvTLcC2qroQeKI9H1Y3Ay9y6HSqURrbXcBjVfUh4KPAS4zI+JJ8EPgt4KKq+giDQ9FrGO7xfZXB\n50fXtONJshK4jsFnzWrg7iTz/XN1uvFtBT5cVb8E7ADWw/GNb74P/ngM+UWRP6uq9lTV863898CP\nGFyncxWwua22GbhmbrZwdpIsBT4F/BmD83RhdMa2EPi1qvoKDOYCq+pNRmR8wE8YfOl5Tzt55j0M\nTpwZ2vFV1V8Bb0ypPtx4rgbur6oDVbULeJnBZ9C8Nd34qmpbVb3Vnj4DLG3lYx7fKIbKdBdFnjdH\n29K79s3wYwz+wy+pqr1t0V5gyRxt1mzdCfwe8FanblTGthz4cZKvJnk2yZ8meS8jMr6qeh24A/g/\nDMJkf1VtY0TG13G48ZzL4DNm0ih83nweeKyVj3l8oxgqI3vmQZL3AQ8DN1fVT7vLanDGxdCNPclv\nAK9V1XMc2kt5h2EdW7MAuAi4u6ouAv6BKYeChnl8SX4B+I/ABxl8AL0vyWe76wzz+KYzg/EM7ViT\n/Gfgn6rq60dY7YjjG8VQmQCWdZ4v451JO5SSnMYgUO6rqkda9d4kZ7fl5wCvzdX2zcKvAFcl+Vvg\nfuDfJLmP0RgbDP72dlfVd9vzhxiEzJ4RGd+/AP5HVe2rqoPAXwD/itEZ36TD/T1O/bxZ2uqGTpJ/\nx+Aw9L/tVB/z+EYxVL4HrEjywSSnM5hkenSOt2lWMrinxpeBF6vqjzuLHgXWtvJa4JGpbee7qrq1\nqpZV1XIGE7xPVtX1jMDYYDAfBryS5MJW9Qngh8A3GYHxMTjp4ONJzmx/p59gcMLFqIxv0uH+Hh8F\n1iQ5PclyYAWDC7GHSpLVDA5BX11V/9hZdOzjq6qRewBXMrja/mVg/VxvTw/j+VUG8w3PA8+1x2pg\nMfAdBmdrbAUWzfW2znKcvw482sojMzbgl4DvAj9g8E1+4YiN7z8xCMoXGExinzbM42Owx/wq8E8M\n5mc/d6TxALe2z5qXgCvmevuPY3yfB3YC/7vz+XL38Y7Pix8lSb0ZxcNfkqQ5YqhIknpjqEiSemOo\nSJJ6Y6hIknpjqEiSemOoSJJ6Y6hIknrz/wF0zsvts73EjAAAAABJRU5ErkJggg==\n",
169 ] 169 ]
170 }, 170 },
171 { 171 {
172 "cell_type": "code", 172 "cell_type": "code",
173 "execution_count": 8, 173 "execution_count": 8,
174 "outputs": [
175 "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
176 "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
177 "\u001b[0;32m<ipython-input-1-0aacb5dec8fd>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mN_k\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mn_occurrence_from_D\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mD\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0mskew\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mN_k\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mN_k\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
178 "\u001b[0;31mNameError\u001b[0m: name 'n_occurrence_from_D' is not defined"
179 "metadata": {}, 174 "metadata": {},
180 "outputs": [ 175 "outputs": [
181 { 176 {
182 "name": "stdout", 177 "name": "stdout",
183 "output_type": "stream", 178 "output_type": "stream",
237 ] 232 ]
238 }, 233 },
239 { 234 {
240 "cell_type": "code", 235 "cell_type": "code",
241 "execution_count": 17, 236 "execution_count": 17,
242 "metadata": { 237 "metadata": {},
243 "collapsed": false
244 },
245 "outputs": [ 238 "outputs": [
246 { 239 {
247 "data": { 240 "data": {
248 "text/plain": [ 241 "text/plain": [
249 "array([[4650, 2942, 3520, ..., 3488, 2864, 6361],\n", 242 "array([[4650, 2942, 3520, ..., 3488, 2864, 6361],\n",