m@6
|
1 {
|
m@6
|
2 "cells": [
|
m@6
|
3 {
|
m@6
|
4 "cell_type": "code",
|
m@6
|
5 "execution_count": 1,
|
m@6
|
6 "metadata": {
|
m@6
|
7 "collapsed": true
|
m@6
|
8 },
|
m@6
|
9 "outputs": [],
|
m@6
|
10 "source": [
|
m@6
|
11 "import numpy as np\n",
|
m@6
|
12 "import pickle"
|
m@6
|
13 ]
|
m@6
|
14 },
|
m@6
|
15 {
|
m@6
|
16 "cell_type": "code",
|
m@6
|
17 "execution_count": 2,
|
m@6
|
18 "metadata": {
|
m@6
|
19 "collapsed": true
|
m@6
|
20 },
|
m@6
|
21 "outputs": [],
|
m@6
|
22 "source": [
|
m@7
|
23 "filenames = ['/import/c4dm-04/mariap/train_data_melodia_8.pickle',\n",
|
m@6
|
24 " '/import/c4dm-04/mariap/val_data_melodia_8.pickle', \n",
|
m@6
|
25 " '/import/c4dm-04/mariap/test_data_melodia_8.pickle']"
|
m@6
|
26 ]
|
m@6
|
27 },
|
m@6
|
28 {
|
m@6
|
29 "cell_type": "code",
|
m@63
|
30 "execution_count": 25,
|
m@63
|
31 "metadata": {
|
m@63
|
32 "collapsed": true
|
m@63
|
33 },
|
m@63
|
34 "outputs": [],
|
m@63
|
35 "source": [
|
m@63
|
36 "# verify on the 30-second segments\n",
|
m@63
|
37 "filenames = ['/import/c4dm-04/mariap/train_data_melodia_8_30sec.pickle',\n",
|
m@63
|
38 " '/import/c4dm-04/mariap/val_data_melodia_8_30sec.pickle', \n",
|
m@63
|
39 " '/import/c4dm-04/mariap/test_data_melodia_8_30sec.pickle']"
|
m@63
|
40 ]
|
m@63
|
41 },
|
m@63
|
42 {
|
m@63
|
43 "cell_type": "code",
|
m@63
|
44 "execution_count": 26,
|
Maria@40
|
45 "metadata": {
|
Maria@40
|
46 "collapsed": true
|
Maria@40
|
47 },
|
m@6
|
48 "outputs": [],
|
m@6
|
49 "source": [
|
m@6
|
50 "all_Yaudio = []\n",
|
m@7
|
51 "all_Y = []\n",
|
m@6
|
52 "for filename in filenames:\n",
|
m@7
|
53 " _, Y, Yaudio = pickle.load(open(filename, 'rb'))\n",
|
m@6
|
54 " all_Yaudio.append(Yaudio)\n",
|
m@7
|
55 " all_Y.append(Y)\n",
|
m@7
|
56 "all_Yaudio = np.concatenate(all_Yaudio)\n",
|
m@7
|
57 "all_Y = np.concatenate(all_Y)"
|
m@6
|
58 ]
|
m@6
|
59 },
|
m@6
|
60 {
|
m@6
|
61 "cell_type": "code",
|
m@63
|
62 "execution_count": 27,
|
Maria@40
|
63 "metadata": {
|
Maria@40
|
64 "collapsed": true
|
Maria@40
|
65 },
|
m@7
|
66 "outputs": [],
|
m@6
|
67 "source": [
|
m@6
|
68 "uniq_audio, uniq_counts = np.unique(all_Yaudio, return_counts=True)"
|
m@6
|
69 ]
|
m@6
|
70 },
|
m@6
|
71 {
|
m@6
|
72 "cell_type": "markdown",
|
m@6
|
73 "metadata": {},
|
m@6
|
74 "source": [
|
m@6
|
75 "## Stats on audio files with very few music frames (after the speech/music discrimination)"
|
m@6
|
76 ]
|
m@6
|
77 },
|
m@6
|
78 {
|
m@6
|
79 "cell_type": "code",
|
m@7
|
80 "execution_count": 8,
|
m@42
|
81 "metadata": {},
|
m@6
|
82 "outputs": [
|
m@6
|
83 {
|
m@7
|
84 "name": "stdout",
|
m@7
|
85 "output_type": "stream",
|
m@7
|
86 "text": [
|
m@7
|
87 "63 files out of 8200 have less than 10 frames\n"
|
m@6
|
88 ]
|
m@6
|
89 }
|
m@6
|
90 ],
|
m@6
|
91 "source": [
|
m@6
|
92 "min_n_frames = 10\n",
|
m@7
|
93 "short_files_idx = np.where(uniq_counts<min_n_frames)[0]\n",
|
m@7
|
94 "print '%d files out of %d have less than %d frames' % (len(short_files_idx), len(uniq_counts), min_n_frames)"
|
m@7
|
95 ]
|
m@7
|
96 },
|
m@7
|
97 {
|
m@7
|
98 "cell_type": "markdown",
|
m@7
|
99 "metadata": {},
|
m@7
|
100 "source": [
|
m@7
|
101 "Countries for tracks with less than 10 frames"
|
m@7
|
102 ]
|
m@7
|
103 },
|
m@7
|
104 {
|
m@7
|
105 "cell_type": "code",
|
m@7
|
106 "execution_count": 17,
|
m@42
|
107 "metadata": {},
|
m@7
|
108 "outputs": [
|
m@7
|
109 {
|
m@7
|
110 "name": "stdout",
|
m@7
|
111 "output_type": "stream",
|
m@7
|
112 "text": [
|
m@7
|
113 "{'Italy': 1, 'Peru': 1, 'Solomon Islands': 2, 'France': 2, 'Ethiopia': 1, 'Somalia': 1, 'Ireland': 1, 'Swaziland': 1, 'Argentina': 1, 'Norway': 1, 'Nigeria': 1, 'Algeria': 1, 'Germany': 1, 'Puerto Rico': 1, 'Dominican Republic': 1, 'Poland': 3, 'Spain': 2, 'Netherlands': 1, 'Uganda': 4, 'Western Sahara': 5, 'Gambia': 2, 'Philippines': 2, 'Trinidad and Tobago': 1, 'Latvia': 1, 'South Sudan': 3, 'Mali': 1, 'Russia': 1, 'Romania': 1, 'Portugal': 1, 'South Africa': 3, 'Egypt': 1, 'Sierra Leone': 1, 'United Kingdom': 4, 'Lesotho': 1, 'Senegal': 2, 'Colombia': 2, 'Japan': 2, 'Nicaragua': 1, 'Botswana': 1}\n"
|
m@7
|
114 ]
|
m@7
|
115 }
|
m@7
|
116 ],
|
m@7
|
117 "source": [
|
m@7
|
118 "countries = np.array([all_Y[np.where(all_Yaudio==uniq_audio[audio_idx])[0][0]][0] for audio_idx in short_files_idx])\n",
|
m@7
|
119 "unique, counts = np.unique(countries, return_counts=True)\n",
|
m@7
|
120 "print dict(zip(unique, counts))"
|
m@6
|
121 ]
|
m@6
|
122 },
|
m@6
|
123 {
|
m@6
|
124 "cell_type": "markdown",
|
m@6
|
125 "metadata": {},
|
m@6
|
126 "source": [
|
m@6
|
127 "## Stats on average duration of the music segments for all tracks"
|
m@6
|
128 ]
|
m@6
|
129 },
|
m@6
|
130 {
|
m@6
|
131 "cell_type": "code",
|
m@7
|
132 "execution_count": 18,
|
m@42
|
133 "metadata": {},
|
m@6
|
134 "outputs": [
|
m@6
|
135 {
|
m@7
|
136 "name": "stdout",
|
m@7
|
137 "output_type": "stream",
|
m@7
|
138 "text": [
|
m@7
|
139 "mean 65.750000\n",
|
m@7
|
140 "median 44.000000\n",
|
m@7
|
141 "std 45.947865\n",
|
m@7
|
142 "mean duration 32.875000\n"
|
m@6
|
143 ]
|
m@6
|
144 }
|
m@6
|
145 ],
|
m@6
|
146 "source": [
|
m@6
|
147 "sr = 2.0 # with 8-second window and 0.5-second hop size the sampling rate is 2 about 2 samples per second\n",
|
m@6
|
148 "print 'mean %f' % np.mean(uniq_counts)\n",
|
m@6
|
149 "print 'median %f' % np.median(uniq_counts)\n",
|
m@6
|
150 "print 'std %f' % np.std(uniq_counts)\n",
|
m@6
|
151 "print 'mean duration %f' % (np.mean(uniq_counts) / sr)"
|
m@6
|
152 ]
|
m@6
|
153 },
|
m@6
|
154 {
|
m@6
|
155 "cell_type": "markdown",
|
m@6
|
156 "metadata": {},
|
m@6
|
157 "source": [
|
m@7
|
158 "## Stats on average duration of the music segments for the Smithsonian tracks"
|
m@7
|
159 ]
|
m@7
|
160 },
|
m@7
|
161 {
|
m@7
|
162 "cell_type": "code",
|
m@63
|
163 "execution_count": 28,
|
m@42
|
164 "metadata": {},
|
m@7
|
165 "outputs": [
|
m@7
|
166 {
|
m@7
|
167 "name": "stdout",
|
m@7
|
168 "output_type": "stream",
|
m@7
|
169 "text": [
|
m@7
|
170 "n tracks: 6132\n",
|
m@7
|
171 "mean 42.618885\n",
|
m@7
|
172 "median 44.000000\n",
|
m@7
|
173 "std 4.804534\n",
|
m@7
|
174 "mean duration 21.309442\n"
|
m@7
|
175 ]
|
m@7
|
176 }
|
m@7
|
177 ],
|
m@7
|
178 "source": [
|
m@7
|
179 "#British library tracks start with 'D:/Audio/...'\n",
|
m@7
|
180 "idx_SM_tracks = np.array([i for i in range(len(uniq_audio)) if len(uniq_audio[i].split('D:/'))==1])\n",
|
m@7
|
181 "sr = 2.0 # with 8-second window and 0.5-second hop size the sampling rate is 2 about 2 samples per second\n",
|
m@7
|
182 "print 'n tracks: %d' % len(idx_SM_tracks)\n",
|
m@7
|
183 "print 'mean %f' % np.mean(uniq_counts[idx_SM_tracks])\n",
|
m@7
|
184 "print 'median %f' % np.median(uniq_counts[idx_SM_tracks])\n",
|
m@7
|
185 "print 'std %f' % np.std(uniq_counts[idx_SM_tracks])\n",
|
m@7
|
186 "print 'mean duration %f' % (np.mean(uniq_counts[idx_SM_tracks]) / sr)"
|
m@7
|
187 ]
|
m@7
|
188 },
|
m@7
|
189 {
|
m@7
|
190 "cell_type": "markdown",
|
m@7
|
191 "metadata": {},
|
m@7
|
192 "source": [
|
m@6
|
193 "## Stats on average duration of the music segments for the British Library tracks"
|
m@6
|
194 ]
|
m@6
|
195 },
|
m@6
|
196 {
|
m@6
|
197 "cell_type": "code",
|
m@63
|
198 "execution_count": 29,
|
m@42
|
199 "metadata": {},
|
m@6
|
200 "outputs": [
|
m@6
|
201 {
|
m@7
|
202 "name": "stdout",
|
m@7
|
203 "output_type": "stream",
|
m@7
|
204 "text": [
|
m@7
|
205 "n tracks: 2068\n",
|
m@63
|
206 "mean 42.459381\n",
|
m@63
|
207 "median 44.000000\n",
|
m@63
|
208 "std 6.567739\n",
|
m@63
|
209 "mean duration 21.229691\n"
|
m@6
|
210 ]
|
m@6
|
211 }
|
m@6
|
212 ],
|
m@6
|
213 "source": [
|
m@6
|
214 "#British library tracks start with 'D:/Audio/...'\n",
|
m@6
|
215 "idx_BL_tracks = np.array([i for i in range(len(uniq_audio)) if len(uniq_audio[i].split('D:/'))>1])\n",
|
m@6
|
216 "sr = 2.0 # with 8-second window and 0.5-second hop size the sampling rate is 2 about 2 samples per second\n",
|
m@7
|
217 "print 'n tracks: %d' % len(idx_BL_tracks)\n",
|
m@6
|
218 "print 'mean %f' % np.mean(uniq_counts[idx_BL_tracks])\n",
|
m@6
|
219 "print 'median %f' % np.median(uniq_counts[idx_BL_tracks])\n",
|
m@6
|
220 "print 'std %f' % np.std(uniq_counts[idx_BL_tracks])\n",
|
m@6
|
221 "print 'mean duration %f' % (np.mean(uniq_counts[idx_BL_tracks]) / sr)"
|
m@6
|
222 ]
|
m@6
|
223 },
|
m@6
|
224 {
|
m@6
|
225 "cell_type": "code",
|
m@63
|
226 "execution_count": 12,
|
m@63
|
227 "metadata": {},
|
m@63
|
228 "outputs": [
|
m@63
|
229 {
|
m@63
|
230 "data": {
|
m@63
|
231 "text/plain": [
|
m@63
|
232 "8089"
|
m@63
|
233 ]
|
m@63
|
234 },
|
m@63
|
235 "execution_count": 12,
|
m@63
|
236 "metadata": {},
|
m@63
|
237 "output_type": "execute_result"
|
m@63
|
238 }
|
m@63
|
239 ],
|
m@63
|
240 "source": [
|
m@63
|
241 "6147+1942"
|
m@63
|
242 ]
|
m@63
|
243 },
|
m@63
|
244 {
|
m@63
|
245 "cell_type": "code",
|
m@63
|
246 "execution_count": 18,
|
m@63
|
247 "metadata": {},
|
m@63
|
248 "outputs": [
|
m@63
|
249 {
|
m@63
|
250 "data": {
|
m@63
|
251 "text/plain": [
|
m@63
|
252 "8099"
|
m@63
|
253 ]
|
m@63
|
254 },
|
m@63
|
255 "execution_count": 18,
|
m@63
|
256 "metadata": {},
|
m@63
|
257 "output_type": "execute_result"
|
m@63
|
258 }
|
m@63
|
259 ],
|
m@63
|
260 "source": [
|
m@63
|
261 "6119+1980"
|
m@63
|
262 ]
|
m@63
|
263 },
|
m@63
|
264 {
|
m@63
|
265 "cell_type": "code",
|
m@63
|
266 "execution_count": 24,
|
m@63
|
267 "metadata": {},
|
m@63
|
268 "outputs": [
|
m@63
|
269 {
|
m@63
|
270 "data": {
|
m@63
|
271 "text/plain": [
|
m@63
|
272 "8200"
|
m@63
|
273 ]
|
m@63
|
274 },
|
m@63
|
275 "execution_count": 24,
|
m@63
|
276 "metadata": {},
|
m@63
|
277 "output_type": "execute_result"
|
m@63
|
278 }
|
m@63
|
279 ],
|
m@63
|
280 "source": [
|
m@63
|
281 "6132+2068"
|
m@63
|
282 ]
|
m@63
|
283 },
|
m@63
|
284 {
|
m@63
|
285 "cell_type": "code",
|
m@6
|
286 "execution_count": null,
|
m@6
|
287 "metadata": {
|
m@6
|
288 "collapsed": true
|
m@6
|
289 },
|
m@6
|
290 "outputs": [],
|
m@6
|
291 "source": []
|
m@6
|
292 }
|
m@6
|
293 ],
|
m@6
|
294 "metadata": {
|
m@6
|
295 "kernelspec": {
|
m@6
|
296 "display_name": "Python 2",
|
m@6
|
297 "language": "python",
|
m@6
|
298 "name": "python2"
|
m@6
|
299 },
|
m@6
|
300 "language_info": {
|
m@6
|
301 "codemirror_mode": {
|
m@6
|
302 "name": "ipython",
|
m@6
|
303 "version": 2
|
m@6
|
304 },
|
m@6
|
305 "file_extension": ".py",
|
m@6
|
306 "mimetype": "text/x-python",
|
m@6
|
307 "name": "python",
|
m@6
|
308 "nbconvert_exporter": "python",
|
m@6
|
309 "pygments_lexer": "ipython2",
|
m@42
|
310 "version": "2.7.12"
|
m@6
|
311 }
|
m@6
|
312 },
|
m@6
|
313 "nbformat": 4,
|
m@7
|
314 "nbformat_minor": 1
|
m@6
|
315 }
|