m@48
|
1 import numpy as np
|
m@48
|
2 import pandas as pd
|
m@48
|
3 import sys
|
m@48
|
4 sys.path.append('../')
|
m@48
|
5 import scripts.load_dataset as load_dataset
|
m@48
|
6 import scripts.map_and_average as mapper
|
m@48
|
7 import scripts.classification as classification
|
m@48
|
8 import scripts.outliers as outliers
|
m@48
|
9
|
m@48
|
10 #df = load_dataset.sample_dataset(csv_file=load_dataset.METADATA_FILE)
|
m@48
|
11 OUTPUT_FILES = load_dataset.OUTPUT_FILES
|
m@48
|
12 n_iters = 1
|
m@48
|
13 n = int(sys.argv[1])
|
m@48
|
14 MAPPER_OUTPUT_FILES = mapper.OUTPUT_FILES
|
m@48
|
15
|
m@48
|
16 #for n in range(n_iters):
|
m@48
|
17 if 1:
|
m@48
|
18 print "iteration %d" % n
|
m@48
|
19
|
m@48
|
20 print "mapping..."
|
m@48
|
21 mapper.INPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for
|
m@48
|
22 output_file in OUTPUT_FILES]
|
m@48
|
23 _, _, ldadata_list, _, _, Y, Yaudio = mapper.lda_map_and_average_frames(min_variance=0.99)
|
m@48
|
24 mapper.OUTPUT_FILES = [output_file.split('.pickle')[0]+'_'+str(n)+'.pickle' for
|
m@48
|
25 output_file in MAPPER_OUTPUT_FILES]
|
m@48
|
26 mapper.write_output([], [], ldadata_list, [], [], Y, Yaudio)
|
m@48
|
27
|
m@48
|
28 #X = np.concatenate(ldadata_list, axis=1)
|
m@48
|
29
|
m@48
|
30 ## classification and confusion
|
m@48
|
31 #print "classifying..."
|
m@48
|
32 #traininds, testinds = classification.get_train_test_indices(Yaudio)
|
m@48
|
33 #X_train, Y_train, X_test, Y_test = classification.get_train_test_sets(X, Y, traininds, testinds)
|
m@48
|
34 #accuracy, _ = classification.confusion_matrix(X_train, Y_train, X_test, Y_test, saveCF=False, plots=False)
|
m@48
|
35 #print accuracy
|
m@48
|
36
|
m@48
|
37 ## outliers
|
m@48
|
38 #print "detecting outliers..."
|
m@48
|
39 #df_global, threshold, MD = outliers.get_outliers_df(X, Y, chi2thr=0.999)
|
m@48
|
40 #outliers.print_most_least_outliers_topN(df_global, N=10)
|
m@48
|
41
|
m@48
|
42 ## write output
|
m@48
|
43 #print "writing file"
|
m@48
|
44 #df_global.to_csv('../data/outliers_'+str(n)+'.csv', index=False) |