annotate scripts/outliers.py @ 18:ed109218dd4b branch-tests

rename result scripts and more tests
author Maria Panteli
date Tue, 12 Sep 2017 23:18:19 +0100
parents
children 65b9330afdd8
rev   line source
Maria@18 1 # -*- coding: utf-8 -*-
Maria@18 2 """
Maria@18 3 Created on Tue Jul 12 20:49:48 2016
Maria@18 4
Maria@18 5 @author: mariapanteli
Maria@18 6 """
Maria@18 7
Maria@18 8 import numpy as np
Maria@18 9 import pandas as pd
Maria@18 10 import pickle
Maria@18 11 from collections import Counter
Maria@18 12 from sklearn.cluster import KMeans
Maria@18 13
Maria@18 14 import utils
Maria@18 15 import utils_spatial
Maria@18 16
Maria@18 17
Maria@18 18 def country_outlier_df(counts, labels, out_file=None, normalize=False):
Maria@18 19 if len(counts.keys()) < len(np.unique(labels)):
Maria@18 20 for label in np.unique(labels):
Maria@18 21 if not counts.has_key(label):
Maria@18 22 counts.update({label:0})
Maria@18 23 if normalize:
Maria@18 24 counts = normalize_outlier_counts(counts, Counter(labels))
Maria@18 25 df = pd.DataFrame.from_dict(counts, orient='index').reset_index()
Maria@18 26 df.rename(columns={'index':'Country', 0:'Outliers'}, inplace=True)
Maria@18 27 if out_file is not None:
Maria@18 28 df.to_csv(out_file, index=False)
Maria@18 29 return df
Maria@18 30
Maria@18 31
Maria@18 32 def normalize_outlier_counts(outlier_counts, country_counts):
Maria@18 33 '''Normalize a dictionary of outlier counts per country by
Maria@18 34 the total number of recordings per country
Maria@18 35 '''
Maria@18 36 for key in outlier_counts.keys():
Maria@18 37 # dictionaries should have the same keys
Maria@18 38 outlier_counts[key] = float(outlier_counts[key]) / float(country_counts[key])
Maria@18 39 return outlier_counts
Maria@18 40
Maria@18 41
Maria@18 42 def get_outliers_df(X, Y, chi2thr=0.999, out_file=None):
Maria@18 43 threshold, y_pred, MD = utils.get_outliers_Mahal(X, chi2thr=chi2thr)
Maria@18 44 global_counts = Counter(Y[y_pred])
Maria@18 45 df = country_outlier_df(global_counts, Y, normalize=True)
Maria@18 46 if out_file is not None:
Maria@18 47 df.to_csv(out_file, index=False)
Maria@18 48 return df, threshold, MD
Maria@18 49
Maria@18 50
Maria@18 51 def print_most_least_outliers_topN(df, N=10):
Maria@18 52 sort_inds = df['Outliers'].argsort() # ascending order
Maria@18 53 df_most = df[['Country', 'Outliers']].iloc[sort_inds[::-1][:N]]
Maria@18 54 df_least = df[['Country', 'Outliers']].iloc[sort_inds[:N]]
Maria@18 55 print "most outliers "
Maria@18 56 print df_most
Maria@18 57 print "least outliers "
Maria@18 58 print df_least
Maria@18 59
Maria@18 60
Maria@18 61 def load_metadata(Yaudio, metadata_file):
Maria@18 62 df = pd.read_csv(metadata_file)
Maria@18 63 df_audio = pd.DataFrame({'Audio':Yaudio})
Maria@18 64 ddf = pd.merge(df_audio, df, on='Audio', suffixes=['', '_r']) # in the order of Yaudio
Maria@18 65 return ddf
Maria@18 66
Maria@18 67
Maria@18 68 def clusters_metadata(df, cl_pred, out_file=None):
Maria@18 69 def get_top_N_counts(labels, N=3):
Maria@18 70 ulab, ucount = np.unique(labels, return_counts=True)
Maria@18 71 inds = np.argsort(ucount)
Maria@18 72 return zip(ulab[inds[-N:]],ucount[inds[-N:]])
Maria@18 73 info = np.array([str(df['Country'].iloc[i]) for i in range(len(df))])
Maria@18 74 styles_description = []
Maria@18 75 uniq_cl = np.unique(cl_pred)
Maria@18 76 for ccl in uniq_cl:
Maria@18 77 inds = np.where(cl_pred==ccl)[0]
Maria@18 78 styles_description.append(get_top_N_counts(info[inds], N=3))
Maria@18 79 df_styles = pd.DataFrame(data=styles_description, index=uniq_cl)
Maria@18 80 print df_styles.to_latex()
Maria@18 81 if out_file is not None:
Maria@18 82 df_styles.to_csv(out_file, index=False)
Maria@18 83
Maria@18 84
Maria@18 85 if __name__ == '__main__':
Maria@18 86 # load LDA-transformed frames
Maria@18 87 X_list, Y, Yaudio = pickle.load(open('data/lda_data_8.pickle','rb'))
Maria@18 88 ddf = load_metadata(Yaudio, metadata_file='data/metadata.csv')
Maria@18 89 w, data_countries = utils_spatial.get_neighbors_for_countries_in_dataset(Y)
Maria@18 90 w_dict = utils_spatial.from_weights_to_dict(w, data_countries)
Maria@18 91 X = np.concatenate(X_list, axis=1)
Maria@18 92
Maria@18 93 # global outliers
Maria@18 94 df_global, threshold, MD = get_outliers_df(X, Y, chi2thr=0.999)
Maria@18 95 print_most_least_outliers_topN(df_global, N=10)
Maria@18 96
Maria@18 97 spatial_outliers = utils.get_local_outliers_from_neighbors_dict(X, Y, w_dict, chi2thr=0.999, do_pca=True)
Maria@18 98 spatial_counts = Counter(dict([(ll[0],ll[1]) for ll in spatial_outliers]))
Maria@18 99 df_local = country_outlier_df(spatial_counts, Y, normalize=True)
Maria@18 100 print_most_least_outliers_topN(df_local, N=10)
Maria@18 101
Maria@18 102 feat = [Xrhy, Xmel, Xmfc, Xchr]
Maria@18 103 feat_labels = ['rhy', 'mel', 'mfc', 'chr']
Maria@18 104 tabs_feat = []
Maria@18 105 for i in range(len(feat)):
Maria@18 106 XX = feat[i]
Maria@18 107 df_feat, threshold, MD = get_outliers_df(XX, Y, chi2thr=0.999)
Maria@18 108 print_most_least_outliers_topN(df_feat, N=5)
Maria@18 109
Maria@18 110 # how many styles are there
Maria@18 111 #bestncl, ave_silh = utils.best_n_clusters_silhouette(X, min_ncl=5, max_ncl=50, metric="cosine")
Maria@18 112 bestncl = 13
Maria@18 113
Maria@18 114 # get cluster predictions and metadata for each cluster
Maria@18 115 cluster_model = KMeans(n_clusters=bestncl, random_state=50).fit(X)
Maria@18 116 centroids = cluster_model.cluster_centers_
Maria@18 117 cl_pred = cluster_model.predict(X)
Maria@18 118 ddf['Clusters'] = cl_pred
Maria@18 119 clusters_metadata(ddf, cl_pred)
Maria@18 120
Maria@18 121 # how similar are the cultures and which ones seem to be global outliers
Maria@18 122 cluster_freq = utils.get_cluster_freq_linear(X, Y, centroids)
Maria@18 123
Maria@18 124 # Moran on Mahalanobis distances
Maria@18 125 data = cluster_freq.get_values()
Maria@18 126 data_countries = cluster_freq.index
Maria@18 127 #threshold, y_pred, MD = utils.get_outliers_Mahal(data, chi2thr=0.999)
Maria@18 128 threshold, y_pred, MD = utils.get_outliers(data, chi2thr=0.999)
Maria@18 129 y = np.sqrt(MD)
Maria@18 130 utils_spatial.print_Moran_outliers(y, w, data_countries)
Maria@18 131 utils_spatial.plot_Moran_scatterplot(y, w, data_countries)