annotate scripts/classification.py @ 62:4425a4918102 branch-tests

fixed indices for feature components
author Maria Panteli <m.x.panteli@gmail.com>
date Thu, 21 Sep 2017 17:35:07 +0100
parents d118b6ca8370
children e83ecc296669
rev   line source
Maria@18 1 # -*- coding: utf-8 -*-
Maria@18 2 """
Maria@18 3 Created on Thu Nov 10 15:10:32 2016
Maria@18 4
Maria@18 5 @author: mariapanteli
Maria@18 6 """
Maria@18 7 import numpy as np
Maria@18 8 import pandas as pd
m@48 9 import pickle
Maria@18 10 from sklearn import metrics
m@62 11 from sklearn.model_selection import train_test_split
Maria@18 12
Maria@18 13 import map_and_average
Maria@18 14 import util_feature_learning
Maria@18 15
Maria@18 16
Maria@18 17 FILENAMES = map_and_average.OUTPUT_FILES
m@58 18 TRANSFORM_LABELS = ['LDA', 'PCA', 'NMF', 'SSNMF', 'NA']
Maria@18 19
Maria@18 20 def load_data_from_pickle(filename):
Maria@18 21 X_list, Y, Yaudio = pickle.load(open(filename,'rb'))
m@55 22 X = np.concatenate(X_list, axis=1)
Maria@18 23 return X, Y, Yaudio
Maria@18 24
Maria@18 25
m@62 26 def feat_inds_from_pickle(filename):
m@62 27 X_list, Y, Yaudio = pickle.load(open(filename,'rb'))
m@62 28 feat_inds = [len(X_list[0]), len(X_list[1]), len(X_list[2]), len(X_list[3])]
m@62 29 feat_labels = ['rhy', 'mel', 'mfc', 'chr']
m@62 30 return feat_labels, feat_inds
m@62 31
m@62 32
m@45 33 def get_train_test_indices(audiolabs):
Maria@18 34 trainset, valset, testset = map_and_average.load_train_val_test_sets()
Maria@18 35 trainaudiolabels, testaudiolabels = trainset[2], testset[2]
Maria@18 36 # train, test indices
Maria@18 37 aa_train = np.unique(trainaudiolabels)
Maria@18 38 aa_test = np.unique(testaudiolabels)
Maria@18 39 traininds = np.array([i for i, item in enumerate(audiolabs) if item in aa_train])
Maria@18 40 testinds = np.array([i for i, item in enumerate(audiolabs) if item in aa_test])
Maria@18 41 return traininds, testinds
Maria@18 42
Maria@18 43
Maria@18 44 def get_train_test_sets(X, Y, traininds, testinds):
Maria@18 45 X_train = X[traininds, :]
Maria@18 46 Y_train = Y[traininds]
Maria@18 47 X_test = X[testinds, :]
Maria@18 48 Y_test = Y[testinds]
Maria@18 49 return X_train, Y_train, X_test, Y_test
Maria@18 50
Maria@18 51
Maria@18 52 def classify_for_filenames(file_list=FILENAMES):
Maria@18 53 df_results = pd.DataFrame()
Maria@18 54 feat_learner = util_feature_learning.Transformer()
m@58 55 #traininds, testinds = get_train_test_indices(Yaudio)
m@58 56 for filename, transform_label in zip(file_list, TRANSFORM_LABELS):
m@58 57 print filename
Maria@18 58 X, Y, Yaudio = load_data_from_pickle(filename)
m@58 59 #X_train, Y_train, X_test, Y_test = get_train_test_sets(X, Y, traininds, testinds)
m@58 60 X_train, X_val_test, Y_train, Y_val_test = train_test_split(X, Y, train_size=0.6, random_state=12345, stratify=Y)
m@58 61 X_val, X_test, Y_val, Y_test = train_test_split(X_val_test, Y_val_test, train_size=0.5, random_state=12345, stratify=Y_val_test)
m@58 62 df_result = feat_learner.classify(X_train, Y_train, X_test, Y_test, transform_label=transform_label)
m@62 63 df_result_feat = classify_each_feature(X_train, Y_train, X_test, Y_test, filename, transform_label=transform_label)
m@58 64 df_result = pd.concat([df_result, df_result_feat], axis=1, ignore_index=True)
Maria@18 65 df_results = pd.concat([df_results, df_result], axis=0, ignore_index=True)
m@47 66 return df_results
m@47 67
m@47 68
m@62 69 def classify_each_feature(X_train, Y_train, X_test, Y_test, filename, transform_label=" "):
m@47 70 n_dim = X_train.shape[1]
m@62 71 #feat_labels, feat_inds = map_and_average.get_feat_inds(n_dim=n_dim)
m@62 72 feat_labels, feat_inds = feat_inds_from_pickle(filename)
m@47 73 #df_results = pd.DataFrame()
m@47 74 # first the classification with all features together
m@58 75 df_results = feat_learner.classify(X_train, Y_train, X_test, Y_test, transform_label=transform_label)
m@47 76 # then append for each feature separately
m@47 77 for i in range(len(feat_inds)):
m@47 78 df_result = feat_learner.classify(X_train[:, feat_inds[i]], Y_train,
m@47 79 X_test[:, feat_inds[i]], Y_test)
m@47 80 df_results = pd.concat([df_results, df_result], axis=1, ignore_index=True)
m@47 81 return df_results
Maria@18 82
Maria@18 83
Maria@18 84 def plot_CF(CF, labels=None, figurename=None):
Maria@18 85 labels[labels=='United States of America'] = 'United States Amer.'
Maria@18 86 plt.imshow(CF, cmap="Greys")
Maria@18 87 plt.xticks(range(len(labels)), labels, rotation='vertical', fontsize=4)
Maria@18 88 plt.yticks(range(len(labels)), labels, fontsize=4)
Maria@18 89 if figurename is not None:
Maria@18 90 plt.savefig(figurename, bbox_inches='tight')
Maria@18 91
Maria@18 92
Maria@18 93 def confusion_matrix(X_train, Y_train, X_test, Y_test, saveCF=False, plots=False):
Maria@18 94 feat_learner = util_feature_learning.Transformer()
m@30 95 accuracy, predictions = feat_learner.classification_accuracy(X_train, Y_train,
m@30 96 X_test, Y_test, model=feat_learner.modelLDA)
Maria@18 97 labels = np.unique(Y_test) # TODO: countries in geographical proximity
Maria@18 98 CF = metrics.confusion_matrix(Y_test, predictions, labels=labels)
Maria@18 99 if saveCF:
Maria@18 100 np.savetxt('data/CFlabels.csv', labels, fmt='%s')
Maria@18 101 np.savetxt('data/CF.csv', CF, fmt='%10.5f')
Maria@18 102 if plots:
Maria@18 103 plot_CF(CF, labels=labels, figurename='data/conf_matrix.pdf')
m@58 104 return accuracy, CF
m@58 105
m@58 106
m@58 107 def confusion_matrix_for_best_classification_result(df_results, output_data=False):
m@58 108 max_i = np.argmax(df_results[:, 1])
m@58 109 feat_learning_i = max_i % 4 # 4 classifiers for each feature learning method
m@58 110 filename = FILENAMES[feat_learning_i]
m@58 111 print filename
m@58 112 X, Y, Yaudio = load_data_from_pickle(filename)
m@58 113 #traininds, testinds = get_train_test_indices(Yaudio)
m@58 114 #X_train, Y_train, X_test, Y_test = get_train_test_sets(X, Y, traininds, testinds)
m@58 115 X_train, X_val_test, Y_train, Y_val_test = train_test_split(X, Y, train_size=0.6, random_state=12345, stratify=Y)
m@58 116 X_val, X_test, Y_val, Y_test = train_test_split(X_val_test, Y_val_test, train_size=0.5, random_state=12345, stratify=Y_val_test)
m@58 117 if output_data:
m@58 118 _, CF = confusion_matrix(X_train, Y_train, X_test, Y_test, saveCF=True, plots=True)
m@58 119 else:
m@58 120 _, CF = confusion_matrix(X_train, Y_train, X_test, Y_test, saveCF=False, plots=False)
m@58 121 return CF
Maria@18 122
Maria@18 123
Maria@18 124 if __name__ == '__main__':
Maria@18 125 df_results = classify_for_filenames(file_list=FILENAMES)
m@58 126 CF = confusion_matrix_for_best_classification_result(df_results, output_data=False)
Maria@18 127