Mercurial > hg > plcrp
view crp.pl @ 3:974d7be8eec4 tip
Update to pack-based dcg utilities
author | samer |
---|---|
date | Tue, 03 Oct 2017 11:52:23 +0100 |
parents | 2c8a10d9e3cb |
children |
line wrap: on
line source
:- module(crp, [ empty_classes/1 , classes_value/2 , classes_counts/2 , classes_update/3 , seqmap_classes//2 , dec_class//3 , inc_class//1 , remove_class//1 , add_class//2 , crp_prob/5 , crp_sample/5 , crp_sample_obs/7 , crp_sample_rm/5 , crp_dist/6 , dp_sampler_teh/3 , py_sampler_teh/4 ]). /** <module> Chinese Restaurant Process utilities == gem_model ---> dp(Alpha:nonneg) ; py(Alpha:nonneg,Discount:nonneg). gamma_prior ---> gamma(nonneg,nonneg). beta_prior ---> beta(nonneg,nonneg). param_sampler == pred(+gem_model,-gem_model,+rndstate,-rndstate). == */ :- meta_predicate seqmap_classes(4,+,?,?). :- use_foreign_library(foreign(crp)). :- use_module(library(dcg_core)). :- use_module(library(dcg_pair)). :- use_module(library(dcg_macros)). :- use_module(library(math)). :- use_module(library(eval)). :- use_module(library(lazy)). :- use_module(library(randpred)). :- use_module(library(apply_macros)). %% crp_prob( +GEM:gem_model, +Classes:classes(A), +X:A, +PProb:float, -Prob:float) is det. % % Compute the probability Prob of observing X given a CRP % and a base probability of PProb. %% crp_sample( +GEM:gem_model, +Classes:classes(A), -A:action(A))// is det. % % Sample a new value from CRP, Action A is either new, which means % that the user should sample a new value from the base distribtion, % or old(X,ID), where X is an old value and C is the class ID. % Operates in random state DCG. %% crp_sample_obs( +GEM:gem_model, +Classes:classes(A), +X:A, +PProb:float, -A:action)// is det. % % Sample class appropriate for observation of value X. PProb is the % base probability of X from the base distribution. Action A is new % or old(ID) where ID is the class id. % Operates in random state DCG. %% crp_sample_rm( +Classes:classes(A), +X:A, -C:class_id)// is det. % % Sample appropriate class from which to remove value X. C is the % class id of the chosen class. % Operates in random state DCG. %% crp_dist( +GEM:gem_model, +Classes:classes(A), +Base:dist(A), -Dist:dist(A))// is det. % % Get posterior distribution associated with node using stick breaking method. % Operates in random state DCG. crp_dist( dp(Alpha), classes(_,Counts,Values), Base, Dist, RS1, RS3) :- sumlist(Counts,Total), Norm is Total+Alpha, ( Total>0 -> dirichlet(Counts,Probs1, RS1, RS2), lazy_dp(Alpha,Base,Alpha,ValuesT,ProbsT, RS2, RS3), maplist(mul(Total),Probs1,Probs2), append(Probs2,ProbsT,ProbsA), append(Values,ValuesT,ValuesA), Dist=lazy_discrete(ValuesA,ProbsA,Norm) ; lazy_dp(Alpha, Base, 1, ValuesT, ProbsT, RS1, RS3), Dist=lazy_discrete(ValuesT,ProbsT,1) ). % -------------------------------------------------------------------------------- % classes data structure (basic CRP stuff) user:portray(classes(_,Counts,Vals)) :- format('<crp|~p:~p>',[Counts,Vals]). %% empty_classes( -Classes:classes(_)) is det. % % Unify Classes with an empty classes structure. empty_classes(classes(0,[],[])). %% classes_value( +Classes:classes(A), +X:A) is semidet. %% classes_value( +Classes:classes(A), -X:A) is multi. % % Check that X is one of the values represented in Classes. % If X is unbound on entry, it is unified with all values on backtracking. classes_value(classes(_,_,Vals),X) :- member(X,Vals). %% classes_counts( +Classes:classes(A), -Counts:list(natural)) is det. % % Gets the list of counts, one per class. classes_counts( classes(_,Counts,_), Counts). %% seqmap_classes( +P:pred(natural,A,T,T), +Classes:classes(A), +S1:T, -S2:T) is multi. % % Sequentiall apply phrase P to all classes. Arguments to P are the number of items % in the class and the value (of type A) associated with it. seqmap_classes(P, classes(_,Counts,Vals)) --> seqmap( P, Counts, Vals). user:goal_expansion(seqmap_classes(P,CX,S1,S2), (CX=classes(_,Counts,Vals), seqmap(P, Counts,Vals,S1,S2))). %% dec_class( +ID:class_id, -C:natural, -X:A, +C1:classes(A), -C2:classes(A)) is det. % % Decrement count associated with class id N. C is the count after % decrementing and X is the value associated with the Nth class. dec_class(N,CI,X,classes(K,C1,V),classes(K,C2,V)) :- dec_nth(N,_,CI,C1,C2), nth1(N,V,X). dec_nth(1,X,Y,[X|T],[Y|T]) :- succ(Y,X). dec_nth(N,A,B,[X|T1],[X|T2]) :- succ(M,N), dec_nth(M,A,B,T1,T2). %% inc_class( +ID:class_id, +C1:classes(A), -C2:classes(A)) is det. % % Increment count associated with class N. inc_class(C,classes(K,C1,V),classes(K,C2,V)) :- inc_nth(C,C1,C2). inc_nth(1,[X|T],[Y|T]) :- succ(X,Y). inc_nth(N,[X|T1],[X|T2]) :- succ(M,N), inc_nth(M,T1,T2). %% remove_class( +ID:class_id, +C1:classes(A), -C2:classes(A)) is det. % % Removes class N. remove_class(I,classes(K1,C1,V1),classes(K2,C2,V2)) :- remove_from_list(I,_,C1,C2), remove_from_list(I,_,V1,V2), succ(K2,K1). %% add_class( +X:A, -ID:class_id, +C1:classes(A), -C2:classes(A)) is det. % % Add a class associated with value X. N is the id of the new class. add_class(X,K2,classes(K1,C1,V1),classes(K2,C2,V2)) :- succ(K1,K2), append(C1,[1],C2), append(V1,[X],V2). remove_from_list(1,X,[X|T],T). remove_from_list(N,X,[Y|T1],[Y|T2]) :- ( var(N) -> remove_from_list(M,X,T1,T2), succ(M,N) ; succ(M,N), remove_from_list(M,X,T1,T2) ). %------------------------------------------------------------------ % Get posterior distribution at node using stick-breaking % construction. lazy_dp(A,H,P0,Vals,Probs) --> spawn(S0), { lazy_unfold(unfold_dp(A,H),Vals,Probs,P0-S0,_) }. lazy_dp_paired(A,H,P0,ValsProbs) --> spawn(S0), { lazy_unfold(unfold_dp(A,H),ValsProbs,P0-S0,_) }. unfold_dp(A,H,V,X) --> \> call(H,V), unfold_gem(A,X). unfold_dp(A,H,V:X) --> \> call(H,V), unfold_gem(A,X). % lazy_gem(A,Probs) --> spawn(S0), { lazy_unfold(unfold_gem(A),Probs,(1,S0),_) }. unfold_gem(A,X) --> \> beta(1,A,P), \< trans(P0,P1), { X is P*P0, P1 is P0-X }. %% classes_update( +Action:action(A), +C1:classes(A), -C2:classes(A)) is det. % % Update classes structure with a new observation. classes_update(old(_,ID),C1,C2) :- inc_class(ID,C1,C2). classes_update(new(X,ID),C1,C2) :- add_class(X,ID,C1,C2). % PARAMETER SAMPLING % --------------------------------------------------------------- % Initialisers % Samplers written in C. %% dp_sampler_teh( +Prior:gamma_prior, +Counts:list(natural), -S:param_sampler) is det. % % Prepares a predicate for sampling the concentration parameter of a Dirichlet process. % The sampler's =|gem_prior|= arguments must be of the form =|dp(_)|=. dp_sampler_teh( gamma(A,B), CX, crp:sample_dp_teh(ApSumKX,B,NX)) :- maplist(sumlist,CX,NX), maplist(length,CX,KX), sumlist(KX,SumKX), ApSumKX is A+SumKX. %% py_sampler_teh( +ThPrior:gamma_prior, +DiscPr:beta_prior, +Counts:list(natural), -S:param_sampler) is det. % % Prepares a predicate for sampling the concentration and discount % parameters of a Pitman-Yor process. % The sampler's =|gem_prior|= arguments must be of the form =|dp(_)|=. py_sampler_teh( ThPrior, DiscPrior, CountsX, crp:Sampler) :- Sampler = sample_py_teh( ThPrior, DiscPrior, CountsX). /* slow_sample_py_teh( gamma(A,B), beta(DA,DB), CountsX, py(Theta1,Disc1), py(Theta2,Disc2)) --> % do several lots of sampling auxillary variables, one per client node % seqmap( py_sample_s_z_w(Theta1,Disc1), CountsX, SX, NSX, ZX, WX), seqmap( py_sample_s_z_log_w(Theta1,Disc1), CountsX, SX, NSX, ZX, LogWX), { % maplist(log,WX,LogWX), sumlist(SX,SumSX), sumlist(NSX,SumNSX), sumlist(ZX,SumZX), sumlist(LogWX,SumLogWX), A1 is A+SumSX, B1 is B-SumLogWX, DA1 is DA+SumNSX, DB1 is DB+SumZX }, gamma(A1, B1, Theta2), beta(DA1, DB1, Disc2). py_sample_s_z_w(Theta,Disc,Counts,S,NS,Z,W) --> py_sample_bern_z(Disc,Counts,Z), py_sample_bern_s(Theta,Disc,Counts,S,NS), py_sample_beta_w(Theta,Counts,W). py_sample_s_z_log_w(Theta,Disc,Counts,S,NS,Z,LogW) --> py_sample_bern_z(Disc,Counts,Z), py_sample_bern_s(Theta,Disc,Counts,S,NS), py_sample_beta_log_w(Theta,Counts,LogW). py_sample_beta_w(_, [], 1) --> !. py_sample_beta_w(Theta, Counts, W) --> {sumlist(Counts,N), Th1 is Theta+1, N1 is N-1}, beta( Th1, N1, W). py_sample_beta_log_w(_, [], 0) --> !. py_sample_beta_log_w(Theta, Counts, LogW) --> {sumlist(Counts,N), Th1 is Theta+1, N1 is N-1}, beta( Th1, N1, W), { LogW is log(W) }. py_sample_bern_s(Theta,Disc,Counts,SumS,SumNS) --> ( {Counts=[_|Cm1], length(Cm1,Kminus1), numlist(1,Kminus1,KX)} -> {maplist(mul(Disc),KX,KDX)}, sum_bernoulli(KDX, Theta, SumS), {SumNS is Kminus1 - SumS} ; {SumS=0,SumNS=0} ). py_sample_bern_z(Disc,Counts,Z) --> {Disc1 is 1-Disc}, seqmap( sample_bern_z(Disc1), Counts, ZX), {sumlist(ZX,Z)}. sample_bern_z(Disc1,Count,SumZ) --> {CountM2 is Count-2}, ( {CountM2<0} -> {SumZ=0} ; {numlist(0,CountM2,I)}, sum_bernoulli(I, Disc1, SumZ) ). sum_bernoulli(AX,B,T,S1,S2) :- sum_bernoulli(AX,B,0,T,S1,S2). sum_bernoulli([],_,T,T,S,S) :- !. sum_bernoulli([A|AX],B,T1,T3,S1,S3) :- bernoulli(A,B,X,S1,S2), T2 is T1+X, sum_bernoulli(AX,B,T2,T3,S2,S3). % Gamma distribution with rate parameter B. :- procedure gamma(1,1). gamma(A,B,X) --> gamma(A,U), {X is U/B}. % Bernoulli with unnormalised weights for 0 and 1. :- procedure bernoulli(1,1). bernoulli(A,B,X) --> uniform01(U), ({(A+B)*U<B} -> {X=1}; {X=0} ). */