Mercurial > hg > plcrp
diff crp.pl @ 0:b31415b4a196
Initial check in.
author | samer |
---|---|
date | Fri, 20 Jan 2012 16:58:52 +0000 |
parents | |
children | 2c8a10d9e3cb |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/crp.pl Fri Jan 20 16:58:52 2012 +0000 @@ -0,0 +1,293 @@ +:- module(crp, + [ empty_classes/1 + , classes_value/2 + , classes_counts/2 + , classes_update/3 + , seqmap_classes//2 + , dec_class//3 + , inc_class//1 + , remove_class//1 + , add_class//2 + + , crp_prob/5 + , crp_sample/5 + , crp_sample_obs/7 + , crp_sample_rm/5 + , crp_dist/6 + + , dp_sampler_teh/3 + , py_sampler_teh/4 + ]). + +/** <module> Chinese Restaurant Process utilities + + == + gem_model ---> dp(Alpha:nonneg) + ; py(Alpha:nonneg,Discount:nonneg). + + gamma_prior ---> gamma(nonneg,nonneg). + beta_prior ---> beta(nonneg,nonneg). + param_sampler == pred(+gem_model,-gem_model,+rndstate,-rndstate). + == + +*/ +:- meta_predicate seqmap_classes(4,+,?,?). + +:- load_foreign_library(foreign(crp)). +:- use_module(library(dcgu)). +:- use_module(library(math)). +:- use_module(library(eval)). +:- use_module(library(lazy)). +:- use_module(library(randpred)). +:- use_module(library(apply_macros)). + + +%% crp_prob( +GEM:gem_model, +Classes:classes(A), +X:A, +PProb:float, -Prob:float) is det. +% +% Compute the probability Prob of observing X given a CRP +% and a base probability of PProb. + + +%% crp_sample( +GEM:gem_model, +Classes:classes(A), -A:action(A))// is det. +% +% Sample a new value from CRP, Action A is either new, which means +% that the user should sample a new value from the base distribtion, +% or old(X,ID), where X is an old value and C is the class ID. +% Operates in random state DCG. + + +%% crp_sample_obs( +GEM:gem_model, +Classes:classes(A), +X:A, +PProb:float, -A:action)// is det. +% +% Sample class appropriate for observation of value X. PProb is the +% base probability of X from the base distribution. Action A is new +% or old(ID) where ID is the class id. +% Operates in random state DCG. + + +%% crp_sample_rm( +Classes:classes(A), +X:A, -C:class_id)// is det. +% +% Sample appropriate class from which to remove value X. C is the +% class id of the chosen class. +% Operates in random state DCG. + + +%% crp_dist( +GEM:gem_model, +Classes:classes(A), +Base:dist(A), -Dist:dist(A))// is det. +% +% Get posterior distribution associated with node using stick breaking method. +% Operates in random state DCG. +crp_dist( dp(Alpha), classes(_,Counts,Values), Base, Dist, RS1, RS3) :- + sumlist(Counts,Total), + Norm is Total+Alpha, + + ( Total>0 + -> dirichlet(Counts,Probs1, RS1, RS2), + lazy_dp(Alpha,Base,Alpha,ValuesT,ProbsT, RS2, RS3), + maplist(mul(Total),Probs1,Probs2), + append(Probs2,ProbsT,ProbsA), + append(Values,ValuesT,ValuesA), + Dist=lazy_discrete(ValuesA,ProbsA,Norm) + ; lazy_dp(Alpha, Base, 1, ValuesT, ProbsT, RS1, RS3), + Dist=lazy_discrete(ValuesT,ProbsT,1) + ). + + +% -------------------------------------------------------------------------------- +% classes data structure (basic CRP stuff) + +user:portray(classes(_,Counts,Vals)) :- format('<crp|~p:~p>',[Counts,Vals]). + + +%% empty_classes( -Classes:classes(_)) is det. +% +% Unify Classes with an empty classes structure. +empty_classes(classes(0,[],[])). + + +%% classes_value( +Classes:classes(A), +X:A) is semidet. +%% classes_value( +Classes:classes(A), -X:A) is multi. +% +% Check that X is one of the values represented in Classes. +% If X is unbound on entry, it is unified with all values on backtracking. +classes_value(classes(_,_,Vals),X) :- member(X,Vals). + + +%% classes_counts( +Classes:classes(A), -Counts:list(natural)) is det. +% +% Gets the list of counts, one per class. +classes_counts( classes(_,Counts,_), Counts). + +%% seqmap_classes( +P:pred(natural,A,T,T), +Classes:classes(A), +S1:T, -S2:T) is multi. +% +% Sequentiall apply phrase P to all classes. Arguments to P are the number of items +% in the class and the value (of type A) associated with it. +seqmap_classes(P, classes(_,Counts,Vals)) --> seqmap( P, Counts, Vals). + +user:goal_expansion(seqmap_classes(P,CX,S1,S2), (CX=classes(_,Counts,Vals), seqmap(P, Counts,Vals,S1,S2))). + +%% dec_class( +ID:class_id, -C:natural, -X:A, +C1:classes(A), -C2:classes(A)) is det. +% +% Decrement count associated with class id N. C is the count after +% decrementing and X is the value associated with the Nth class. +dec_class(N,CI,X,classes(K,C1,V),classes(K,C2,V)) :- dec_nth(N,_,CI,C1,C2), nth1(N,V,X). +dec_nth(1,X,Y,[X|T],[Y|T]) :- succ(Y,X). +dec_nth(N,A,B,[X|T1],[X|T2]) :- succ(M,N), dec_nth(M,A,B,T1,T2). + +%% inc_class( +ID:class_id, +C1:classes(A), -C2:classes(A)) is det. +% +% Increment count associated with class N. +inc_class(C,classes(K,C1,V),classes(K,C2,V)) :- inc_nth(C,C1,C2). +inc_nth(1,[X|T],[Y|T]) :- succ(X,Y). +inc_nth(N,[X|T1],[X|T2]) :- succ(M,N), inc_nth(M,T1,T2). + + +%% remove_class( +ID:class_id, +C1:classes(A), -C2:classes(A)) is det. +% +% Removes class N. +remove_class(I,classes(K1,C1,V1),classes(K2,C2,V2)) :- + remove_from_list(I,_,C1,C2), + remove_from_list(I,_,V1,V2), + succ(K2,K1). + +%% add_class( +X:A, -ID:class_id, +C1:classes(A), -C2:classes(A)) is det. +% +% Add a class associated with value X. N is the id of the new class. +add_class(X,K2,classes(K1,C1,V1),classes(K2,C2,V2)) :- + succ(K1,K2), + append(C1,[1],C2), + append(V1,[X],V2). + + +remove_from_list(1,X,[X|T],T). +remove_from_list(N,X,[Y|T1],[Y|T2]) :- + ( var(N) + -> remove_from_list(M,X,T1,T2), succ(M,N) + ; succ(M,N), remove_from_list(M,X,T1,T2) + ). + + +%------------------------------------------------------------------ +% Get posterior distribution at node using stick-breaking +% construction. + +lazy_dp(A,H,P0,Vals,Probs) --> + spawn(S0), { lazy_unfold(unfold_dp(A,H),Vals,Probs,(P0,S0),_) }. + +lazy_dp_paired(A,H,P0,ValsProbs) --> + spawn(S0), { lazy_unfold(unfold_dp(A,H),ValsProbs,(P0,S0),_) }. + +unfold_dp(A,H,V,X) --> \> call(H,V), unfold_gem(A,X). +unfold_dp(A,H,V:X) --> \> call(H,V), unfold_gem(A,X). + +% lazy_gem(A,Probs) --> spawn(S0), { lazy_unfold(unfold_gem(A),Probs,(1,S0),_) }. + +unfold_gem(A,X) --> + \> beta(1,A,P), + \< trans(P0,P1), + { X is P*P0, P1 is P0-X }. + +%% classes_update( +Action:action(A), +C1:classes(A), -C2:classes(A)) is det. +% +% Update classes structure with a new observation. +classes_update(old(_,ID),C1,C2) :- inc_class(ID,C1,C2). +classes_update(new(X,ID),C1,C2) :- add_class(X,ID,C1,C2). + + + + +% PARAMETER SAMPLING + + + +% --------------------------------------------------------------- +% Initialisers +% Samplers written in C. + +%% dp_sampler_teh( +Prior:gamma_prior, +Counts:list(natural), -S:param_sampler) is det. +% +% Prepares a predicate for sampling the concentration parameter of a Dirichlet process. +% The sampler's =|gem_prior|= arguments must be of the form =|dp(_)|=. +dp_sampler_teh( gamma(A,B), CX, crp:sample_dp_teh(ApSumKX,B,NX)) :- + maplist(sumlist,CX,NX), + maplist(length,CX,KX), + sumlist(KX,SumKX), + ApSumKX is A+SumKX. + +%% py_sampler_teh( +ThPrior:gamma_prior, +DiscPr:beta_prior, +Counts:list(natural), -S:param_sampler) is det. +% +% Prepares a predicate for sampling the concentration and discount +% parameters of a Pitman-Yor process. +% The sampler's =|gem_prior|= arguments must be of the form =|dp(_)|=. +py_sampler_teh( ThPrior, DiscPrior, CountsX, crp:Sampler) :- + Sampler = sample_py_teh( ThPrior, DiscPrior, CountsX). + +/* +slow_sample_py_teh( gamma(A,B), beta(DA,DB), CountsX, py(Theta1,Disc1), py(Theta2,Disc2)) --> + % do several lots of sampling auxillary variables, one per client node + % seqmap( py_sample_s_z_w(Theta1,Disc1), CountsX, SX, NSX, ZX, WX), + seqmap( py_sample_s_z_log_w(Theta1,Disc1), CountsX, SX, NSX, ZX, LogWX), + { % maplist(log,WX,LogWX), + sumlist(SX,SumSX), + sumlist(NSX,SumNSX), + sumlist(ZX,SumZX), + sumlist(LogWX,SumLogWX), + A1 is A+SumSX, B1 is B-SumLogWX, + DA1 is DA+SumNSX, DB1 is DB+SumZX }, + gamma(A1, B1, Theta2), + beta(DA1, DB1, Disc2). + +py_sample_s_z_w(Theta,Disc,Counts,S,NS,Z,W) --> + py_sample_bern_z(Disc,Counts,Z), + py_sample_bern_s(Theta,Disc,Counts,S,NS), + py_sample_beta_w(Theta,Counts,W). + +py_sample_s_z_log_w(Theta,Disc,Counts,S,NS,Z,LogW) --> + py_sample_bern_z(Disc,Counts,Z), + py_sample_bern_s(Theta,Disc,Counts,S,NS), + py_sample_beta_log_w(Theta,Counts,LogW). + +py_sample_beta_w(_, [], 1) --> !. +py_sample_beta_w(Theta, Counts, W) --> + {sumlist(Counts,N), Th1 is Theta+1, N1 is N-1}, + beta( Th1, N1, W). + +py_sample_beta_log_w(_, [], 0) --> !. +py_sample_beta_log_w(Theta, Counts, LogW) --> + {sumlist(Counts,N), Th1 is Theta+1, N1 is N-1}, + beta( Th1, N1, W), { LogW is log(W) }. + +py_sample_bern_s(Theta,Disc,Counts,SumS,SumNS) --> + ( {Counts=[_|Cm1], length(Cm1,Kminus1), numlist(1,Kminus1,KX)} + -> {maplist(mul(Disc),KX,KDX)}, + sum_bernoulli(KDX, Theta, SumS), + {SumNS is Kminus1 - SumS} + ; {SumS=0,SumNS=0} + ). + +py_sample_bern_z(Disc,Counts,Z) --> + {Disc1 is 1-Disc}, + seqmap( sample_bern_z(Disc1), Counts, ZX), + {sumlist(ZX,Z)}. + +sample_bern_z(Disc1,Count,SumZ) --> + {CountM2 is Count-2}, + ( {CountM2<0} -> {SumZ=0} + ; {numlist(0,CountM2,I)}, + sum_bernoulli(I, Disc1, SumZ) + ). + +sum_bernoulli(AX,B,T,S1,S2) :- sum_bernoulli(AX,B,0,T,S1,S2). +sum_bernoulli([],_,T,T,S,S) :- !. +sum_bernoulli([A|AX],B,T1,T3,S1,S3) :- + bernoulli(A,B,X,S1,S2), T2 is T1+X, + sum_bernoulli(AX,B,T2,T3,S2,S3). + +% Gamma distribution with rate parameter B. +:- procedure gamma(1,1). +gamma(A,B,X) --> gamma(A,U), {X is U/B}. + +% Bernoulli with unnormalised weights for 0 and 1. +:- procedure bernoulli(1,1). +bernoulli(A,B,X) --> + uniform01(U), + ({(A+B)*U<B} -> {X=1}; {X=0} ). +*/