annotate NNLSBase.cpp @ 86:e5c16976513d consonance

implemented note output for estimated chords
author matthiasm
date Sun, 28 Nov 2010 23:10:57 +0900
parents 4270f3039ab0
children 7af5312e66f8
rev   line source
Chris@23 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
matthiasm@0 2
Chris@35 3 /*
Chris@35 4 NNLS-Chroma / Chordino
Chris@35 5
Chris@35 6 Audio feature extraction plugins for chromagram and chord
Chris@35 7 estimation.
Chris@35 8
Chris@35 9 Centre for Digital Music, Queen Mary University of London.
Chris@35 10 This file copyright 2008-2010 Matthias Mauch and QMUL.
Chris@35 11
Chris@35 12 This program is free software; you can redistribute it and/or
Chris@35 13 modify it under the terms of the GNU General Public License as
Chris@35 14 published by the Free Software Foundation; either version 2 of the
Chris@35 15 License, or (at your option) any later version. See the file
Chris@35 16 COPYING included with this distribution for more information.
Chris@35 17 */
Chris@35 18
Chris@35 19 #include "NNLSBase.h"
Chris@27 20
Chris@27 21 #include "chromamethods.h"
Chris@27 22
Chris@27 23 #include <cstdlib>
Chris@27 24 #include <fstream>
matthiasm@0 25 #include <cmath>
matthiasm@9 26
Chris@27 27 #include <algorithm>
matthiasm@0 28
matthiasm@0 29 const bool debug_on = false;
matthiasm@0 30
Chris@35 31 NNLSBase::NNLSBase(float inputSampleRate) :
Chris@23 32 Plugin(inputSampleRate),
Chris@35 33 m_logSpectrum(0),
Chris@23 34 m_blockSize(0),
Chris@23 35 m_stepSize(0),
Chris@23 36 m_lengthOfNoteIndex(0),
mail@80 37 m_meanTunings(0),
mail@80 38 m_localTunings(0),
mail@41 39 m_whitening(1.0),
Chris@23 40 m_preset(0.0),
Chris@23 41 m_localTuning(0),
Chris@23 42 m_kernelValue(0),
Chris@23 43 m_kernelFftIndex(0),
Chris@23 44 m_kernelNoteIndex(0),
Chris@23 45 m_dict(0),
mail@60 46 m_tuneLocal(0),
Chris@23 47 m_doNormalizeChroma(0),
mail@60 48 m_rollon(0),
matthiasm@42 49 m_s(0.7),
matthiasm@50 50 m_useNNLS(1),
mail@80 51 m_useHMM(1),
mail@80 52 sinvalues(0),
mail@80 53 cosvalues(0)
matthiasm@0 54 {
Chris@35 55 if (debug_on) cerr << "--> NNLSBase" << endl;
matthiasm@7 56
Chris@23 57 // make the *note* dictionary matrix
Chris@23 58 m_dict = new float[nNote * 84];
Chris@23 59 for (unsigned i = 0; i < nNote * 84; ++i) m_dict[i] = 0.0;
mail@41 60 dictionaryMatrix(m_dict, 0.7);
matthiasm@0 61 }
matthiasm@0 62
matthiasm@0 63
Chris@35 64 NNLSBase::~NNLSBase()
matthiasm@0 65 {
Chris@35 66 if (debug_on) cerr << "--> ~NNLSBase" << endl;
Chris@23 67 delete [] m_dict;
matthiasm@0 68 }
matthiasm@0 69
matthiasm@0 70 string
Chris@35 71 NNLSBase::getMaker() const
matthiasm@0 72 {
Chris@23 73 if (debug_on) cerr << "--> getMaker" << endl;
matthiasm@0 74 // Your name here
matthiasm@0 75 return "Matthias Mauch";
matthiasm@0 76 }
matthiasm@0 77
matthiasm@0 78 int
Chris@35 79 NNLSBase::getPluginVersion() const
matthiasm@0 80 {
Chris@23 81 if (debug_on) cerr << "--> getPluginVersion" << endl;
matthiasm@0 82 // Increment this each time you release a version that behaves
matthiasm@0 83 // differently from the previous one
matthiasm@0 84 return 1;
matthiasm@0 85 }
matthiasm@0 86
matthiasm@0 87 string
Chris@35 88 NNLSBase::getCopyright() const
matthiasm@0 89 {
Chris@23 90 if (debug_on) cerr << "--> getCopyright" << endl;
matthiasm@0 91 // This function is not ideally named. It does not necessarily
matthiasm@0 92 // need to say who made the plugin -- getMaker does that -- but it
matthiasm@0 93 // should indicate the terms under which it is distributed. For
matthiasm@0 94 // example, "Copyright (year). All Rights Reserved", or "GPL"
Chris@35 95 return "GPL";
matthiasm@0 96 }
matthiasm@0 97
Chris@35 98 NNLSBase::InputDomain
Chris@35 99 NNLSBase::getInputDomain() const
matthiasm@0 100 {
Chris@23 101 if (debug_on) cerr << "--> getInputDomain" << endl;
matthiasm@0 102 return FrequencyDomain;
matthiasm@0 103 }
matthiasm@0 104
matthiasm@0 105 size_t
Chris@35 106 NNLSBase::getPreferredBlockSize() const
matthiasm@0 107 {
Chris@23 108 if (debug_on) cerr << "--> getPreferredBlockSize" << endl;
matthiasm@0 109 return 16384; // 0 means "I can handle any block size"
matthiasm@0 110 }
matthiasm@0 111
matthiasm@0 112 size_t
Chris@35 113 NNLSBase::getPreferredStepSize() const
matthiasm@0 114 {
Chris@23 115 if (debug_on) cerr << "--> getPreferredStepSize" << endl;
matthiasm@0 116 return 2048; // 0 means "anything sensible"; in practice this
Chris@23 117 // means the same as the block size for TimeDomain
Chris@23 118 // plugins, or half of it for FrequencyDomain plugins
matthiasm@0 119 }
matthiasm@0 120
matthiasm@0 121 size_t
Chris@35 122 NNLSBase::getMinChannelCount() const
matthiasm@0 123 {
Chris@23 124 if (debug_on) cerr << "--> getMinChannelCount" << endl;
matthiasm@0 125 return 1;
matthiasm@0 126 }
matthiasm@0 127
matthiasm@0 128 size_t
Chris@35 129 NNLSBase::getMaxChannelCount() const
matthiasm@0 130 {
Chris@23 131 if (debug_on) cerr << "--> getMaxChannelCount" << endl;
matthiasm@0 132 return 1;
matthiasm@0 133 }
matthiasm@0 134
Chris@35 135 NNLSBase::ParameterList
Chris@35 136 NNLSBase::getParameterDescriptors() const
matthiasm@0 137 {
Chris@23 138 if (debug_on) cerr << "--> getParameterDescriptors" << endl;
matthiasm@0 139 ParameterList list;
matthiasm@0 140
matthiasm@42 141 ParameterDescriptor d;
matthiasm@42 142 d.identifier = "useNNLS";
matthiasm@42 143 d.name = "use approximate transcription (NNLS)";
matthiasm@42 144 d.description = "Toggles approximate transcription (NNLS).";
matthiasm@42 145 d.unit = "";
matthiasm@42 146 d.minValue = 0.0;
matthiasm@42 147 d.maxValue = 1.0;
matthiasm@42 148 d.defaultValue = 1.0;
matthiasm@42 149 d.isQuantized = true;
matthiasm@42 150 d.quantizeStep = 1.0;
matthiasm@42 151 list.push_back(d);
matthiasm@42 152
mail@41 153 ParameterDescriptor d0;
mail@41 154 d0.identifier = "rollon";
mail@41 155 d0.name = "spectral roll-on";
matthiasm@58 156 d0.description = "Consider the cumulative energy spectrum (from low to high frequencies). All bins below the first bin whose cumulative energy exceeds the quantile [spectral roll on] x [total energy] will be set to 0. A value of 0 means that no bins will be changed.";
matthiasm@59 157 d0.unit = "%";
mail@41 158 d0.minValue = 0;
matthiasm@59 159 d0.maxValue = 5;
mail@41 160 d0.defaultValue = 0;
matthiasm@48 161 d0.isQuantized = true;
matthiasm@59 162 d0.quantizeStep = 0.5;
mail@41 163 list.push_back(d0);
matthiasm@4 164
matthiasm@4 165 ParameterDescriptor d1;
matthiasm@4 166 d1.identifier = "tuningmode";
matthiasm@4 167 d1.name = "tuning mode";
matthiasm@4 168 d1.description = "Tuning can be performed locally or on the whole extraction segment. Local tuning is only advisable when the tuning is likely to change over the audio, for example in podcasts, or in a cappella singing.";
matthiasm@4 169 d1.unit = "";
matthiasm@4 170 d1.minValue = 0;
matthiasm@4 171 d1.maxValue = 1;
matthiasm@4 172 d1.defaultValue = 0;
matthiasm@4 173 d1.isQuantized = true;
matthiasm@4 174 d1.valueNames.push_back("global tuning");
matthiasm@4 175 d1.valueNames.push_back("local tuning");
matthiasm@4 176 d1.quantizeStep = 1.0;
matthiasm@4 177 list.push_back(d1);
matthiasm@4 178
mail@41 179 ParameterDescriptor d2;
mail@41 180 d2.identifier = "whitening";
mail@41 181 d2.name = "spectral whitening";
mail@41 182 d2.description = "Spectral whitening: no whitening - 0; whitening - 1.";
mail@41 183 d2.unit = "";
mail@41 184 d2.isQuantized = true;
mail@41 185 d2.minValue = 0.0;
mail@41 186 d2.maxValue = 1.0;
mail@41 187 d2.defaultValue = 1.0;
mail@41 188 d2.isQuantized = false;
mail@41 189 list.push_back(d2);
mail@41 190
mail@41 191 ParameterDescriptor d3;
mail@41 192 d3.identifier = "s";
mail@41 193 d3.name = "spectral shape";
mail@41 194 d3.description = "Determines how individual notes in the note dictionary look: higher values mean more dominant higher harmonics.";
mail@41 195 d3.unit = "";
mail@41 196 d3.minValue = 0.5;
mail@41 197 d3.maxValue = 0.9;
mail@41 198 d3.defaultValue = 0.7;
mail@41 199 d3.isQuantized = false;
mail@41 200 list.push_back(d3);
mail@41 201
Chris@23 202 ParameterDescriptor d4;
matthiasm@12 203 d4.identifier = "chromanormalize";
matthiasm@12 204 d4.name = "chroma normalization";
matthiasm@12 205 d4.description = "How shall the chroma vector be normalized?";
matthiasm@12 206 d4.unit = "";
matthiasm@12 207 d4.minValue = 0;
matthiasm@13 208 d4.maxValue = 3;
matthiasm@12 209 d4.defaultValue = 0;
matthiasm@12 210 d4.isQuantized = true;
matthiasm@13 211 d4.valueNames.push_back("none");
matthiasm@13 212 d4.valueNames.push_back("maximum norm");
Chris@23 213 d4.valueNames.push_back("L1 norm");
Chris@23 214 d4.valueNames.push_back("L2 norm");
matthiasm@12 215 d4.quantizeStep = 1.0;
matthiasm@12 216 list.push_back(d4);
matthiasm@4 217
matthiasm@0 218 return list;
matthiasm@0 219 }
matthiasm@0 220
matthiasm@0 221 float
Chris@35 222 NNLSBase::getParameter(string identifier) const
matthiasm@0 223 {
Chris@23 224 if (debug_on) cerr << "--> getParameter" << endl;
matthiasm@42 225 if (identifier == "useNNLS") {
matthiasm@42 226 return m_useNNLS;
matthiasm@0 227 }
matthiasm@0 228
mail@41 229 if (identifier == "whitening") {
mail@41 230 return m_whitening;
mail@41 231 }
mail@41 232
mail@41 233 if (identifier == "s") {
mail@41 234 return m_s;
matthiasm@0 235 }
matthiasm@17 236
Chris@23 237 if (identifier == "rollon") {
matthiasm@17 238 return m_rollon;
matthiasm@17 239 }
matthiasm@0 240
matthiasm@0 241 if (identifier == "tuningmode") {
matthiasm@0 242 if (m_tuneLocal) {
matthiasm@0 243 return 1.0;
matthiasm@0 244 } else {
matthiasm@0 245 return 0.0;
matthiasm@0 246 }
matthiasm@0 247 }
Chris@23 248 if (identifier == "preset") {
Chris@23 249 return m_preset;
matthiasm@3 250 }
Chris@23 251 if (identifier == "chromanormalize") {
Chris@23 252 return m_doNormalizeChroma;
matthiasm@12 253 }
matthiasm@50 254
matthiasm@50 255 if (identifier == "useHMM") {
matthiasm@50 256 return m_useHMM;
matthiasm@50 257 }
matthiasm@50 258
matthiasm@0 259 return 0;
matthiasm@0 260
matthiasm@0 261 }
matthiasm@0 262
matthiasm@0 263 void
Chris@35 264 NNLSBase::setParameter(string identifier, float value)
matthiasm@0 265 {
Chris@23 266 if (debug_on) cerr << "--> setParameter" << endl;
matthiasm@42 267 if (identifier == "useNNLS") {
matthiasm@42 268 m_useNNLS = (int) value;
matthiasm@0 269 }
matthiasm@0 270
mail@41 271 if (identifier == "whitening") {
mail@41 272 m_whitening = value;
matthiasm@0 273 }
matthiasm@0 274
mail@41 275 if (identifier == "s") {
mail@41 276 m_s = value;
mail@41 277 }
mail@41 278
matthiasm@50 279 if (identifier == "useHMM") {
matthiasm@50 280 m_useHMM = value;
matthiasm@50 281 }
matthiasm@50 282
matthiasm@0 283 if (identifier == "tuningmode") {
mail@60 284 // m_tuneLocal = (value > 0) ? true : false;
mail@60 285 m_tuneLocal = value;
matthiasm@0 286 // cerr << "m_tuneLocal :" << m_tuneLocal << endl;
matthiasm@0 287 }
matthiasm@42 288 // if (identifier == "preset") {
matthiasm@42 289 // m_preset = value;
matthiasm@42 290 // if (m_preset == 0.0) {
matthiasm@42 291 // m_tuneLocal = false;
matthiasm@42 292 // m_whitening = 1.0;
matthiasm@42 293 // m_dictID = 0.0;
matthiasm@42 294 // }
matthiasm@42 295 // if (m_preset == 1.0) {
matthiasm@42 296 // m_tuneLocal = false;
matthiasm@42 297 // m_whitening = 1.0;
matthiasm@42 298 // m_dictID = 1.0;
matthiasm@42 299 // }
matthiasm@42 300 // if (m_preset == 2.0) {
matthiasm@42 301 // m_tuneLocal = false;
matthiasm@42 302 // m_whitening = 0.7;
matthiasm@42 303 // m_dictID = 0.0;
matthiasm@42 304 // }
matthiasm@42 305 // }
Chris@23 306 if (identifier == "chromanormalize") {
Chris@23 307 m_doNormalizeChroma = value;
Chris@23 308 }
matthiasm@17 309
Chris@23 310 if (identifier == "rollon") {
Chris@23 311 m_rollon = value;
Chris@23 312 }
matthiasm@0 313 }
matthiasm@0 314
Chris@35 315 NNLSBase::ProgramList
Chris@35 316 NNLSBase::getPrograms() const
matthiasm@0 317 {
Chris@23 318 if (debug_on) cerr << "--> getPrograms" << endl;
matthiasm@0 319 ProgramList list;
matthiasm@0 320
matthiasm@0 321 // If you have no programs, return an empty list (or simply don't
matthiasm@0 322 // implement this function or getCurrentProgram/selectProgram)
matthiasm@0 323
matthiasm@0 324 return list;
matthiasm@0 325 }
matthiasm@0 326
matthiasm@0 327 string
Chris@35 328 NNLSBase::getCurrentProgram() const
matthiasm@0 329 {
Chris@23 330 if (debug_on) cerr << "--> getCurrentProgram" << endl;
matthiasm@0 331 return ""; // no programs
matthiasm@0 332 }
matthiasm@0 333
matthiasm@0 334 void
Chris@35 335 NNLSBase::selectProgram(string name)
matthiasm@0 336 {
Chris@23 337 if (debug_on) cerr << "--> selectProgram" << endl;
matthiasm@0 338 }
matthiasm@0 339
matthiasm@0 340
matthiasm@0 341 bool
Chris@35 342 NNLSBase::initialise(size_t channels, size_t stepSize, size_t blockSize)
matthiasm@0 343 {
Chris@23 344 if (debug_on) {
Chris@23 345 cerr << "--> initialise";
Chris@23 346 }
matthiasm@1 347
mail@80 348 // make things for tuning estimation
mail@80 349 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 350 sinvalues.push_back(sin(2*M_PI*(iBPS*1.0/nBPS)));
mail@80 351 cosvalues.push_back(cos(2*M_PI*(iBPS*1.0/nBPS)));
mail@80 352 }
mail@80 353
mail@80 354
mail@80 355 // make hamming window of length 1/2 octave
mail@76 356 int hamwinlength = nBPS * 6 + 1;
mail@76 357 float hamwinsum = 0;
mail@76 358 for (int i = 0; i < hamwinlength; ++i) {
mail@76 359 hw.push_back(0.54 - 0.46 * cos((2*M_PI*i)/(hamwinlength-1)));
mail@76 360 hamwinsum += 0.54 - 0.46 * cos((2*M_PI*i)/(hamwinlength-1));
mail@76 361 }
mail@77 362 for (int i = 0; i < hamwinlength; ++i) hw[i] = hw[i] / hamwinsum;
mail@80 363
mail@80 364
mail@80 365 // initialise the tuning
mail@80 366 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 367 m_meanTunings.push_back(0);
mail@80 368 m_localTunings.push_back(0);
mail@80 369 }
mail@76 370
matthiasm@0 371 if (channels < getMinChannelCount() ||
matthiasm@0 372 channels > getMaxChannelCount()) return false;
matthiasm@0 373 m_blockSize = blockSize;
matthiasm@0 374 m_stepSize = stepSize;
Chris@35 375 m_frameCount = 0;
mail@77 376 int tempn = nNote * m_blockSize/2;
Chris@23 377 // cerr << "length of tempkernel : " << tempn << endl;
Chris@23 378 float *tempkernel;
matthiasm@1 379
Chris@23 380 tempkernel = new float[tempn];
matthiasm@1 381
Chris@23 382 logFreqMatrix(m_inputSampleRate, m_blockSize, tempkernel);
Chris@23 383 m_kernelValue.clear();
Chris@23 384 m_kernelFftIndex.clear();
Chris@23 385 m_kernelNoteIndex.clear();
Chris@23 386 int countNonzero = 0;
Chris@23 387 for (unsigned iNote = 0; iNote < nNote; ++iNote) { // I don't know if this is wise: manually making a sparse matrix
Chris@23 388 for (unsigned iFFT = 0; iFFT < blockSize/2; ++iFFT) {
Chris@23 389 if (tempkernel[iFFT + blockSize/2 * iNote] > 0) {
Chris@23 390 m_kernelValue.push_back(tempkernel[iFFT + blockSize/2 * iNote]);
Chris@23 391 if (tempkernel[iFFT + blockSize/2 * iNote] > 0) {
Chris@23 392 countNonzero++;
Chris@23 393 }
Chris@23 394 m_kernelFftIndex.push_back(iFFT);
Chris@23 395 m_kernelNoteIndex.push_back(iNote);
Chris@23 396 }
Chris@23 397 }
Chris@23 398 }
Chris@23 399 // cerr << "nonzero count : " << countNonzero << endl;
Chris@23 400 delete [] tempkernel;
Chris@35 401 /*
Chris@23 402 ofstream myfile;
Chris@23 403 myfile.open ("matrix.txt");
matthiasm@3 404 // myfile << "Writing this to a file.\n";
Chris@23 405 for (int i = 0; i < nNote * 84; ++i) {
Chris@23 406 myfile << m_dict[i] << endl;
Chris@23 407 }
matthiasm@3 408 myfile.close();
Chris@35 409 */
matthiasm@0 410 return true;
matthiasm@0 411 }
matthiasm@0 412
matthiasm@0 413 void
Chris@35 414 NNLSBase::reset()
matthiasm@0 415 {
Chris@23 416 if (debug_on) cerr << "--> reset";
matthiasm@4 417
matthiasm@0 418 // Clear buffers, reset stored values, etc
Chris@35 419 m_frameCount = 0;
matthiasm@42 420 // m_dictID = 0;
Chris@35 421 m_logSpectrum.clear();
mail@80 422 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 423 m_meanTunings[iBPS] = 0;
mail@80 424 m_localTunings[iBPS] = 0;
mail@80 425 }
Chris@23 426 m_localTuning.clear();
matthiasm@0 427 }
matthiasm@0 428
Chris@35 429 void
Chris@35 430 NNLSBase::baseProcess(const float *const *inputBuffers, Vamp::RealTime timestamp)
matthiasm@0 431 {
Chris@35 432 m_frameCount++;
Chris@23 433 float *magnitude = new float[m_blockSize/2];
matthiasm@0 434
Chris@23 435 const float *fbuf = inputBuffers[0];
Chris@23 436 float energysum = 0;
Chris@23 437 // make magnitude
Chris@23 438 float maxmag = -10000;
Chris@23 439 for (size_t iBin = 0; iBin < m_blockSize/2; iBin++) {
Chris@23 440 magnitude[iBin] = sqrt(fbuf[2 * iBin] * fbuf[2 * iBin] +
Chris@23 441 fbuf[2 * iBin + 1] * fbuf[2 * iBin + 1]);
Chris@23 442 if (maxmag < magnitude[iBin]) maxmag = magnitude[iBin];
Chris@23 443 if (m_rollon > 0) {
Chris@23 444 energysum += pow(magnitude[iBin],2);
Chris@23 445 }
Chris@23 446 }
matthiasm@14 447
Chris@23 448 float cumenergy = 0;
Chris@23 449 if (m_rollon > 0) {
Chris@23 450 for (size_t iBin = 2; iBin < m_blockSize/2; iBin++) {
Chris@23 451 cumenergy += pow(magnitude[iBin],2);
matthiasm@59 452 if (cumenergy < energysum * m_rollon / 100) magnitude[iBin-2] = 0;
Chris@23 453 else break;
Chris@23 454 }
Chris@23 455 }
matthiasm@17 456
Chris@23 457 if (maxmag < 2) {
Chris@23 458 // cerr << "timestamp " << timestamp << ": very low magnitude, setting magnitude to all zeros" << endl;
Chris@23 459 for (size_t iBin = 0; iBin < m_blockSize/2; iBin++) {
Chris@23 460 magnitude[iBin] = 0;
Chris@23 461 }
Chris@23 462 }
matthiasm@4 463
Chris@23 464 // note magnitude mapping using pre-calculated matrix
Chris@23 465 float *nm = new float[nNote]; // note magnitude
Chris@23 466 for (size_t iNote = 0; iNote < nNote; iNote++) {
Chris@23 467 nm[iNote] = 0; // initialise as 0
Chris@23 468 }
Chris@23 469 int binCount = 0;
Chris@23 470 for (vector<float>::iterator it = m_kernelValue.begin(); it != m_kernelValue.end(); ++it) {
Chris@23 471 // cerr << ".";
Chris@23 472 nm[m_kernelNoteIndex[binCount]] += magnitude[m_kernelFftIndex[binCount]] * m_kernelValue[binCount];
Chris@23 473 // cerr << m_kernelFftIndex[binCount] << " -- " << magnitude[m_kernelFftIndex[binCount]] << " -- "<< m_kernelValue[binCount] << endl;
Chris@23 474 binCount++;
Chris@23 475 }
Chris@23 476 // cerr << nm[20];
Chris@23 477 // cerr << endl;
matthiasm@0 478
matthiasm@0 479
Chris@35 480 float one_over_N = 1.0/m_frameCount;
matthiasm@0 481 // update means of complex tuning variables
mail@80 482 for (int iBPS = 0; iBPS < nBPS; ++iBPS) m_meanTunings[iBPS] *= float(m_frameCount-1)*one_over_N;
mail@80 483
mail@80 484 for (int iTone = 0; iTone < round(nNote*0.62/nBPS)*nBPS+1; iTone = iTone + nBPS) {
mail@80 485 for (int iBPS = 0; iBPS < nBPS; ++iBPS) m_meanTunings[iBPS] += nm[iTone + iBPS]*one_over_N;
Chris@23 486 float ratioOld = 0.997;
mail@80 487 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 488 m_localTunings[iBPS] *= ratioOld;
mail@80 489 m_localTunings[iBPS] += nm[iTone + iBPS] * (1 - ratioOld);
mail@80 490 }
matthiasm@0 491 }
matthiasm@0 492 // if (m_tuneLocal) {
Chris@23 493 // local tuning
mail@80 494 // float localTuningImag = sinvalue * m_localTunings[1] - sinvalue * m_localTunings[2];
mail@80 495 // float localTuningReal = m_localTunings[0] + cosvalue * m_localTunings[1] + cosvalue * m_localTunings[2];
mail@80 496
mail@80 497 float localTuningImag = 0;
mail@80 498 float localTuningReal = 0;
mail@80 499 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 500 localTuningReal += m_localTunings[iBPS] * cosvalues[iBPS];
mail@80 501 localTuningImag += m_localTunings[iBPS] * sinvalues[iBPS];
mail@80 502 }
mail@80 503
Chris@23 504 float normalisedtuning = atan2(localTuningImag, localTuningReal)/(2*M_PI);
Chris@23 505 m_localTuning.push_back(normalisedtuning);
matthiasm@0 506
Chris@23 507 Feature f1; // logfreqspec
Chris@23 508 f1.hasTimestamp = true;
matthiasm@0 509 f1.timestamp = timestamp;
Chris@23 510 for (size_t iNote = 0; iNote < nNote; iNote++) {
Chris@23 511 f1.values.push_back(nm[iNote]);
Chris@23 512 }
matthiasm@0 513
matthiasm@0 514 // deletes
matthiasm@0 515 delete[] magnitude;
matthiasm@0 516 delete[] nm;
matthiasm@0 517
Chris@35 518 m_logSpectrum.push_back(f1); // remember note magnitude
matthiasm@0 519 }
matthiasm@0 520
Chris@35 521
Chris@35 522 #ifdef NOT_DEFINED
Chris@35 523
Chris@35 524 NNLSBase::FeatureSet
Chris@35 525 NNLSBase::getRemainingFeatures()
matthiasm@0 526 {
mail@81 527 // if (debug_on) cerr << "--> getRemainingFeatures" << endl;
mail@81 528 FeatureSet fsOut;
mail@81 529 // if (m_logSpectrum.size() == 0) return fsOut;
mail@81 530 // int nChord = m_chordnames.size();
mail@81 531 // //
mail@81 532 // /** Calculate Tuning
mail@81 533 // calculate tuning from (using the angle of the complex number defined by the
mail@81 534 // cumulative mean real and imag values)
mail@81 535 // **/
mail@81 536 // float meanTuningImag = sinvalue * m_meanTunings[1] - sinvalue * m_meanTunings[2];
mail@81 537 // float meanTuningReal = m_meanTunings[0] + cosvalue * m_meanTunings[1] + cosvalue * m_meanTunings[2];
mail@81 538 // float cumulativetuning = 440 * pow(2,atan2(meanTuningImag, meanTuningReal)/(24*M_PI));
mail@81 539 // float normalisedtuning = atan2(meanTuningImag, meanTuningReal)/(2*M_PI);
mail@81 540 // int intShift = floor(normalisedtuning * 3);
mail@81 541 // float floatShift = normalisedtuning * 3 - intShift; // floatShift is a really bad name for this
mail@81 542 //
mail@81 543 // char buffer0 [50];
mail@81 544 //
mail@81 545 // sprintf(buffer0, "estimated tuning: %0.1f Hz", cumulativetuning);
mail@81 546 //
mail@81 547 // // cerr << "normalisedtuning: " << normalisedtuning << '\n';
mail@81 548 //
mail@81 549 // // push tuning to FeatureSet fsOut
mail@81 550 // Feature f0; // tuning
mail@81 551 // f0.hasTimestamp = true;
mail@81 552 // f0.timestamp = Vamp::RealTime::frame2RealTime(0, lrintf(m_inputSampleRate));;
mail@81 553 // f0.label = buffer0;
mail@81 554 // fsOut[0].push_back(f0);
mail@81 555 //
mail@81 556 // /** Tune Log-Frequency Spectrogram
mail@81 557 // calculate a tuned log-frequency spectrogram (f2): use the tuning estimated above (kinda f0) to
mail@81 558 // perform linear interpolation on the existing log-frequency spectrogram (kinda f1).
mail@81 559 // **/
mail@81 560 // cerr << endl << "[NNLS Chroma Plugin] Tuning Log-Frequency Spectrogram ... ";
mail@81 561 //
mail@81 562 // float tempValue = 0;
mail@81 563 // float dbThreshold = 0; // relative to the background spectrum
mail@81 564 // float thresh = pow(10,dbThreshold/20);
mail@81 565 // // cerr << "tune local ? " << m_tuneLocal << endl;
mail@81 566 // int count = 0;
mail@81 567 //
mail@81 568 // for (FeatureList::iterator i = m_logSpectrum.begin(); i != m_logSpectrum.end(); ++i) {
mail@81 569 // Feature f1 = *i;
mail@81 570 // Feature f2; // tuned log-frequency spectrum
mail@81 571 // f2.hasTimestamp = true;
mail@81 572 // f2.timestamp = f1.timestamp;
mail@81 573 // f2.values.push_back(0.0); f2.values.push_back(0.0); // set lower edge to zero
mail@81 574 //
mail@81 575 // if (m_tuneLocal == 1.0) {
mail@81 576 // intShift = floor(m_localTuning[count] * 3);
mail@81 577 // floatShift = m_localTuning[count] * 3 - intShift; // floatShift is a really bad name for this
mail@81 578 // }
mail@81 579 //
mail@81 580 // // cerr << intShift << " " << floatShift << endl;
mail@81 581 //
mail@81 582 // for (unsigned k = 2; k < f1.values.size() - 3; ++k) { // interpolate all inner bins
mail@81 583 // tempValue = f1.values[k + intShift] * (1-floatShift) + f1.values[k+intShift+1] * floatShift;
mail@81 584 // f2.values.push_back(tempValue);
mail@81 585 // }
mail@81 586 //
mail@81 587 // f2.values.push_back(0.0); f2.values.push_back(0.0); f2.values.push_back(0.0); // upper edge
mail@81 588 // vector<float> runningmean = SpecialConvolution(f2.values,hw);
mail@81 589 // vector<float> runningstd;
mail@81 590 // for (int i = 0; i < nNote; i++) { // first step: squared values into vector (variance)
mail@81 591 // runningstd.push_back((f2.values[i] - runningmean[i]) * (f2.values[i] - runningmean[i]));
mail@81 592 // }
mail@81 593 // runningstd = SpecialConvolution(runningstd,hw); // second step convolve
mail@81 594 // for (int i = 0; i < nNote; i++) {
mail@81 595 // runningstd[i] = sqrt(runningstd[i]); // square root to finally have running std
mail@81 596 // if (runningstd[i] > 0) {
mail@81 597 // // f2.values[i] = (f2.values[i] / runningmean[i]) > thresh ?
mail@81 598 // // (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0;
mail@81 599 // f2.values[i] = (f2.values[i] - runningmean[i]) > 0 ?
mail@81 600 // (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0;
mail@81 601 // }
mail@81 602 // if (f2.values[i] < 0) {
mail@81 603 // cerr << "ERROR: negative value in logfreq spectrum" << endl;
mail@81 604 // }
mail@81 605 // }
mail@81 606 // fsOut[2].push_back(f2);
mail@81 607 // count++;
mail@81 608 // }
mail@81 609 // cerr << "done." << endl;
mail@81 610 //
mail@81 611 // /** Semitone spectrum and chromagrams
mail@81 612 // Semitone-spaced log-frequency spectrum derived from the tuned log-freq spectrum above. the spectrum
mail@81 613 // is inferred using a non-negative least squares algorithm.
mail@81 614 // Three different kinds of chromagram are calculated, "treble", "bass", and "both" (which means
mail@81 615 // bass and treble stacked onto each other).
mail@81 616 // **/
mail@81 617 // if (m_useNNLS == 0) {
mail@81 618 // cerr << "[NNLS Chroma Plugin] Mapping to semitone spectrum and chroma ... ";
mail@81 619 // } else {
mail@81 620 // cerr << "[NNLS Chroma Plugin] Performing NNLS and mapping to chroma ... ";
mail@81 621 // }
Chris@23 622 //
mail@81 623 //
mail@81 624 // vector<vector<float> > chordogram;
mail@81 625 // vector<vector<int> > scoreChordogram;
mail@81 626 // vector<float> chordchange = vector<float>(fsOut[2].size(),0);
mail@81 627 // vector<float> oldchroma = vector<float>(12,0);
mail@81 628 // vector<float> oldbasschroma = vector<float>(12,0);
mail@81 629 // count = 0;
mail@81 630 //
mail@81 631 // for (FeatureList::iterator it = fsOut[2].begin(); it != fsOut[2].end(); ++it) {
mail@81 632 // Feature f2 = *it; // logfreq spectrum
mail@81 633 // Feature f3; // semitone spectrum
mail@81 634 // Feature f4; // treble chromagram
mail@81 635 // Feature f5; // bass chromagram
mail@81 636 // Feature f6; // treble and bass chromagram
mail@81 637 //
mail@81 638 // f3.hasTimestamp = true;
mail@81 639 // f3.timestamp = f2.timestamp;
mail@81 640 //
mail@81 641 // f4.hasTimestamp = true;
mail@81 642 // f4.timestamp = f2.timestamp;
mail@81 643 //
mail@81 644 // f5.hasTimestamp = true;
mail@81 645 // f5.timestamp = f2.timestamp;
mail@81 646 //
mail@81 647 // f6.hasTimestamp = true;
mail@81 648 // f6.timestamp = f2.timestamp;
mail@81 649 //
mail@81 650 // float b[nNote];
mail@81 651 //
mail@81 652 // bool some_b_greater_zero = false;
mail@81 653 // float sumb = 0;
mail@81 654 // for (int i = 0; i < nNote; i++) {
mail@81 655 // // b[i] = m_dict[(nNote * count + i) % (nNote * 84)];
mail@81 656 // b[i] = f2.values[i];
mail@81 657 // sumb += b[i];
mail@81 658 // if (b[i] > 0) {
mail@81 659 // some_b_greater_zero = true;
mail@81 660 // }
mail@81 661 // }
mail@81 662 //
mail@81 663 // // here's where the non-negative least squares algorithm calculates the note activation x
mail@81 664 //
mail@81 665 // vector<float> chroma = vector<float>(12, 0);
mail@81 666 // vector<float> basschroma = vector<float>(12, 0);
mail@81 667 // float currval;
mail@81 668 // unsigned iSemitone = 0;
mail@81 669 //
mail@81 670 // if (some_b_greater_zero) {
mail@81 671 // if (m_useNNLS == 0) {
mail@81 672 // for (unsigned iNote = 2; iNote < nNote - 2; iNote += 3) {
mail@81 673 // currval = 0;
mail@81 674 // currval += b[iNote + 1 + -1] * 0.5;
mail@81 675 // currval += b[iNote + 1 + 0] * 1.0;
mail@81 676 // currval += b[iNote + 1 + 1] * 0.5;
mail@81 677 // f3.values.push_back(currval);
mail@81 678 // chroma[iSemitone % 12] += currval * treblewindow[iSemitone];
mail@81 679 // basschroma[iSemitone % 12] += currval * basswindow[iSemitone];
mail@81 680 // iSemitone++;
mail@81 681 // }
mail@81 682 //
mail@81 683 // } else {
mail@81 684 // float x[84+1000];
mail@81 685 // for (int i = 1; i < 1084; ++i) x[i] = 1.0;
mail@81 686 // vector<int> signifIndex;
mail@81 687 // int index=0;
mail@81 688 // sumb /= 84.0;
mail@81 689 // for (unsigned iNote = 2; iNote < nNote - 2; iNote += 3) {
mail@81 690 // float currval = 0;
mail@81 691 // currval += b[iNote + 1 + -1];
mail@81 692 // currval += b[iNote + 1 + 0];
mail@81 693 // currval += b[iNote + 1 + 1];
mail@81 694 // if (currval > 0) signifIndex.push_back(index);
mail@81 695 // f3.values.push_back(0); // fill the values, change later
mail@81 696 // index++;
mail@81 697 // }
mail@81 698 // float rnorm;
mail@81 699 // float w[84+1000];
mail@81 700 // float zz[84+1000];
mail@81 701 // int indx[84+1000];
mail@81 702 // int mode;
mail@81 703 // int dictsize = nNote*signifIndex.size();
mail@81 704 // // cerr << "dictsize is " << dictsize << "and values size" << f3.values.size()<< endl;
mail@81 705 // float *curr_dict = new float[dictsize];
mail@81 706 // for (unsigned iNote = 0; iNote < signifIndex.size(); ++iNote) {
mail@81 707 // for (unsigned iBin = 0; iBin < nNote; iBin++) {
mail@81 708 // curr_dict[iNote * nNote + iBin] = 1.0 * m_dict[signifIndex[iNote] * nNote + iBin];
mail@81 709 // }
mail@81 710 // }
mail@81 711 // nnls(curr_dict, nNote, nNote, signifIndex.size(), b, x, &rnorm, w, zz, indx, &mode);
mail@81 712 // delete [] curr_dict;
mail@81 713 // for (unsigned iNote = 0; iNote < signifIndex.size(); ++iNote) {
mail@81 714 // f3.values[signifIndex[iNote]] = x[iNote];
mail@81 715 // // cerr << mode << endl;
mail@81 716 // chroma[signifIndex[iNote] % 12] += x[iNote] * treblewindow[signifIndex[iNote]];
mail@81 717 // basschroma[signifIndex[iNote] % 12] += x[iNote] * basswindow[signifIndex[iNote]];
mail@81 718 // }
mail@81 719 // }
mail@81 720 // }
mail@81 721 //
mail@81 722 //
mail@81 723 //
mail@81 724 //
mail@81 725 // f4.values = chroma;
mail@81 726 // f5.values = basschroma;
mail@81 727 // chroma.insert(chroma.begin(), basschroma.begin(), basschroma.end()); // just stack the both chromas
mail@81 728 // f6.values = chroma;
mail@81 729 //
mail@81 730 // if (m_doNormalizeChroma > 0) {
mail@81 731 // vector<float> chromanorm = vector<float>(3,0);
mail@81 732 // switch (int(m_doNormalizeChroma)) {
mail@81 733 // case 0: // should never end up here
mail@81 734 // break;
mail@81 735 // case 1:
mail@81 736 // chromanorm[0] = *max_element(f4.values.begin(), f4.values.end());
mail@81 737 // chromanorm[1] = *max_element(f5.values.begin(), f5.values.end());
mail@81 738 // chromanorm[2] = max(chromanorm[0], chromanorm[1]);
mail@81 739 // break;
mail@81 740 // case 2:
mail@81 741 // for (vector<float>::iterator it = f4.values.begin(); it != f4.values.end(); ++it) {
mail@81 742 // chromanorm[0] += *it;
mail@81 743 // }
mail@81 744 // for (vector<float>::iterator it = f5.values.begin(); it != f5.values.end(); ++it) {
mail@81 745 // chromanorm[1] += *it;
mail@81 746 // }
mail@81 747 // for (vector<float>::iterator it = f6.values.begin(); it != f6.values.end(); ++it) {
mail@81 748 // chromanorm[2] += *it;
mail@81 749 // }
mail@81 750 // break;
mail@81 751 // case 3:
mail@81 752 // for (vector<float>::iterator it = f4.values.begin(); it != f4.values.end(); ++it) {
mail@81 753 // chromanorm[0] += pow(*it,2);
mail@81 754 // }
mail@81 755 // chromanorm[0] = sqrt(chromanorm[0]);
mail@81 756 // for (vector<float>::iterator it = f5.values.begin(); it != f5.values.end(); ++it) {
mail@81 757 // chromanorm[1] += pow(*it,2);
mail@81 758 // }
mail@81 759 // chromanorm[1] = sqrt(chromanorm[1]);
mail@81 760 // for (vector<float>::iterator it = f6.values.begin(); it != f6.values.end(); ++it) {
mail@81 761 // chromanorm[2] += pow(*it,2);
mail@81 762 // }
mail@81 763 // chromanorm[2] = sqrt(chromanorm[2]);
mail@81 764 // break;
mail@81 765 // }
mail@81 766 // if (chromanorm[0] > 0) {
mail@81 767 // for (int i = 0; i < f4.values.size(); i++) {
mail@81 768 // f4.values[i] /= chromanorm[0];
mail@81 769 // }
mail@81 770 // }
mail@81 771 // if (chromanorm[1] > 0) {
mail@81 772 // for (int i = 0; i < f5.values.size(); i++) {
mail@81 773 // f5.values[i] /= chromanorm[1];
mail@81 774 // }
mail@81 775 // }
mail@81 776 // if (chromanorm[2] > 0) {
mail@81 777 // for (int i = 0; i < f6.values.size(); i++) {
mail@81 778 // f6.values[i] /= chromanorm[2];
mail@81 779 // }
mail@81 780 // }
mail@81 781 //
mail@81 782 // }
mail@81 783 //
mail@81 784 // // local chord estimation
mail@81 785 // vector<float> currentChordSalience;
mail@81 786 // float tempchordvalue = 0;
mail@81 787 // float sumchordvalue = 0;
mail@81 788 //
mail@81 789 // for (int iChord = 0; iChord < nChord; iChord++) {
mail@81 790 // tempchordvalue = 0;
mail@81 791 // for (int iBin = 0; iBin < 12; iBin++) {
mail@81 792 // tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin];
mail@81 793 // }
mail@81 794 // for (int iBin = 12; iBin < 24; iBin++) {
mail@81 795 // tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin];
mail@81 796 // }
mail@81 797 // sumchordvalue+=tempchordvalue;
mail@81 798 // currentChordSalience.push_back(tempchordvalue);
mail@81 799 // }
mail@81 800 // if (sumchordvalue > 0) {
mail@81 801 // for (int iChord = 0; iChord < nChord; iChord++) {
mail@81 802 // currentChordSalience[iChord] /= sumchordvalue;
mail@81 803 // }
mail@81 804 // } else {
mail@81 805 // currentChordSalience[nChord-1] = 1.0;
mail@81 806 // }
mail@81 807 // chordogram.push_back(currentChordSalience);
mail@81 808 //
mail@81 809 // fsOut[3].push_back(f3);
mail@81 810 // fsOut[4].push_back(f4);
mail@81 811 // fsOut[5].push_back(f5);
mail@81 812 // fsOut[6].push_back(f6);
mail@81 813 // count++;
mail@81 814 // }
mail@81 815 // cerr << "done." << endl;
mail@81 816 //
mail@81 817 //
mail@81 818 // /* Simple chord estimation
mail@81 819 // I just take the local chord estimates ("currentChordSalience") and average them over time, then
mail@81 820 // take the maximum. Very simple, don't do this at home...
mail@81 821 // */
mail@81 822 // cerr << "[NNLS Chroma Plugin] Chord Estimation ... ";
mail@81 823 // count = 0;
mail@81 824 // int halfwindowlength = m_inputSampleRate / m_stepSize;
mail@81 825 // vector<int> chordSequence;
mail@81 826 // for (FeatureList::iterator it = fsOut[6].begin(); it != fsOut[6].end(); ++it) { // initialise the score chordogram
mail@81 827 // vector<int> temp = vector<int>(nChord,0);
mail@81 828 // scoreChordogram.push_back(temp);
mail@81 829 // }
mail@81 830 // for (FeatureList::iterator it = fsOut[6].begin(); it < fsOut[6].end()-2*halfwindowlength-1; ++it) {
mail@81 831 // int startIndex = count + 1;
mail@81 832 // int endIndex = count + 2 * halfwindowlength;
mail@81 833 //
mail@81 834 // float chordThreshold = 2.5/nChord;//*(2*halfwindowlength+1);
mail@81 835 //
mail@81 836 // vector<int> chordCandidates;
mail@81 837 // for (unsigned iChord = 0; iChord < nChord-1; iChord++) {
mail@81 838 // // float currsum = 0;
mail@81 839 // // for (unsigned iFrame = startIndex; iFrame < endIndex; ++iFrame) {
mail@81 840 // // currsum += chordogram[iFrame][iChord];
mail@81 841 // // }
mail@81 842 // // if (currsum > chordThreshold) chordCandidates.push_back(iChord);
mail@81 843 // for (unsigned iFrame = startIndex; iFrame < endIndex; ++iFrame) {
mail@81 844 // if (chordogram[iFrame][iChord] > chordThreshold) {
mail@81 845 // chordCandidates.push_back(iChord);
mail@81 846 // break;
mail@81 847 // }
mail@81 848 // }
mail@81 849 // }
mail@81 850 // chordCandidates.push_back(nChord-1);
mail@81 851 // // cerr << chordCandidates.size() << endl;
mail@81 852 //
mail@81 853 // float maxval = 0; // will be the value of the most salient *chord change* in this frame
mail@81 854 // float maxindex = 0; //... and the index thereof
mail@81 855 // unsigned bestchordL = nChord-1; // index of the best "left" chord
mail@81 856 // unsigned bestchordR = nChord-1; // index of the best "right" chord
mail@81 857 //
mail@81 858 // for (int iWF = 1; iWF < 2*halfwindowlength; ++iWF) {
mail@81 859 // // now find the max values on both sides of iWF
mail@81 860 // // left side:
mail@81 861 // float maxL = 0;
mail@81 862 // unsigned maxindL = nChord-1;
mail@81 863 // for (unsigned kChord = 0; kChord < chordCandidates.size(); kChord++) {
mail@81 864 // unsigned iChord = chordCandidates[kChord];
mail@81 865 // float currsum = 0;
mail@81 866 // for (unsigned iFrame = 0; iFrame < iWF-1; ++iFrame) {
mail@81 867 // currsum += chordogram[count+iFrame][iChord];
mail@81 868 // }
mail@81 869 // if (iChord == nChord-1) currsum *= 0.8;
mail@81 870 // if (currsum > maxL) {
mail@81 871 // maxL = currsum;
mail@81 872 // maxindL = iChord;
mail@81 873 // }
mail@81 874 // }
mail@81 875 // // right side:
mail@81 876 // float maxR = 0;
mail@81 877 // unsigned maxindR = nChord-1;
mail@81 878 // for (unsigned kChord = 0; kChord < chordCandidates.size(); kChord++) {
mail@81 879 // unsigned iChord = chordCandidates[kChord];
mail@81 880 // float currsum = 0;
mail@81 881 // for (unsigned iFrame = iWF-1; iFrame < 2*halfwindowlength; ++iFrame) {
mail@81 882 // currsum += chordogram[count+iFrame][iChord];
mail@81 883 // }
mail@81 884 // if (iChord == nChord-1) currsum *= 0.8;
mail@81 885 // if (currsum > maxR) {
mail@81 886 // maxR = currsum;
mail@81 887 // maxindR = iChord;
mail@81 888 // }
mail@81 889 // }
mail@81 890 // if (maxL+maxR > maxval) {
mail@81 891 // maxval = maxL+maxR;
mail@81 892 // maxindex = iWF;
mail@81 893 // bestchordL = maxindL;
mail@81 894 // bestchordR = maxindR;
mail@81 895 // }
mail@81 896 //
mail@81 897 // }
mail@81 898 // // cerr << "maxindex: " << maxindex << ", bestchordR is " << bestchordR << ", of frame " << count << endl;
mail@81 899 // // add a score to every chord-frame-point that was part of a maximum
mail@81 900 // for (unsigned iFrame = 0; iFrame < maxindex-1; ++iFrame) {
mail@81 901 // scoreChordogram[iFrame+count][bestchordL]++;
mail@81 902 // }
mail@81 903 // for (unsigned iFrame = maxindex-1; iFrame < 2*halfwindowlength; ++iFrame) {
mail@81 904 // scoreChordogram[iFrame+count][bestchordR]++;
mail@81 905 // }
mail@81 906 // if (bestchordL != bestchordR) chordchange[maxindex+count] += (halfwindowlength - abs(maxindex-halfwindowlength)) * 2.0 / halfwindowlength;
mail@81 907 // count++;
mail@81 908 // }
mail@81 909 // // cerr << "******* agent finished *******" << endl;
mail@81 910 // count = 0;
mail@81 911 // for (FeatureList::iterator it = fsOut[6].begin(); it != fsOut[6].end(); ++it) {
mail@81 912 // float maxval = 0; // will be the value of the most salient chord in this frame
mail@81 913 // float maxindex = 0; //... and the index thereof
mail@81 914 // for (unsigned iChord = 0; iChord < nChord; iChord++) {
mail@81 915 // if (scoreChordogram[count][iChord] > maxval) {
mail@81 916 // maxval = scoreChordogram[count][iChord];
mail@81 917 // maxindex = iChord;
mail@81 918 // // cerr << iChord << endl;
mail@81 919 // }
mail@81 920 // }
mail@81 921 // chordSequence.push_back(maxindex);
mail@81 922 // // cerr << "before modefilter, maxindex: " << maxindex << endl;
mail@81 923 // count++;
mail@81 924 // }
mail@81 925 // // cerr << "******* mode filter done *******" << endl;
mail@81 926 //
mail@81 927 //
mail@81 928 // // mode filter on chordSequence
mail@81 929 // count = 0;
mail@81 930 // string oldChord = "";
mail@81 931 // for (FeatureList::iterator it = fsOut[6].begin(); it != fsOut[6].end(); ++it) {
mail@81 932 // Feature f6 = *it;
mail@81 933 // Feature f7; // chord estimate
mail@81 934 // f7.hasTimestamp = true;
mail@81 935 // f7.timestamp = f6.timestamp;
mail@81 936 // Feature f8; // chord estimate
mail@81 937 // f8.hasTimestamp = true;
mail@81 938 // f8.timestamp = f6.timestamp;
mail@81 939 //
mail@81 940 // vector<int> chordCount = vector<int>(nChord,0);
mail@81 941 // int maxChordCount = 0;
mail@81 942 // int maxChordIndex = nChord-1;
mail@81 943 // string maxChord;
mail@81 944 // int startIndex = max(count - halfwindowlength/2,0);
mail@81 945 // int endIndex = min(int(chordogram.size()), count + halfwindowlength/2);
mail@81 946 // for (int i = startIndex; i < endIndex; i++) {
mail@81 947 // chordCount[chordSequence[i]]++;
mail@81 948 // if (chordCount[chordSequence[i]] > maxChordCount) {
mail@81 949 // // cerr << "start index " << startIndex << endl;
mail@81 950 // maxChordCount++;
mail@81 951 // maxChordIndex = chordSequence[i];
mail@81 952 // maxChord = m_chordnames[maxChordIndex];
mail@81 953 // }
mail@81 954 // }
mail@81 955 // // chordSequence[count] = maxChordIndex;
mail@81 956 // // cerr << maxChordIndex << endl;
mail@81 957 // f8.values.push_back(chordchange[count]/(halfwindowlength*2));
mail@81 958 // // cerr << chordchange[count] << endl;
mail@81 959 // fsOut[9].push_back(f8);
mail@81 960 // if (oldChord != maxChord) {
mail@81 961 // oldChord = maxChord;
mail@81 962 //
mail@81 963 // // char buffer1 [50];
mail@81 964 // // if (maxChordIndex < nChord - 1) {
mail@81 965 // // sprintf(buffer1, "%s%s", notenames[maxChordIndex % 12 + 12], chordtypes[maxChordIndex]);
mail@81 966 // // } else {
mail@81 967 // // sprintf(buffer1, "N");
mail@81 968 // // }
mail@81 969 // // f7.label = buffer1;
mail@81 970 // f7.label = m_chordnames[maxChordIndex];
mail@81 971 // fsOut[7].push_back(f7);
mail@81 972 // }
mail@81 973 // count++;
mail@81 974 // }
mail@81 975 // Feature f7; // last chord estimate
mail@81 976 // f7.hasTimestamp = true;
mail@81 977 // f7.timestamp = fsOut[6][fsOut[6].size()-1].timestamp;
mail@81 978 // f7.label = "N";
mail@81 979 // fsOut[7].push_back(f7);
mail@81 980 // cerr << "done." << endl;
mail@81 981 // // // musicity
mail@81 982 // // count = 0;
mail@81 983 // // int oldlabeltype = 0; // start value is 0, music is 1, speech is 2
mail@81 984 // // vector<float> musicityValue;
mail@81 985 // // for (FeatureList::iterator it = fsOut[4].begin(); it != fsOut[4].end(); ++it) {
mail@81 986 // // Feature f4 = *it;
mail@81 987 // //
mail@81 988 // // int startIndex = max(count - musicitykernelwidth/2,0);
mail@81 989 // // int endIndex = min(int(chordogram.size()), startIndex + musicitykernelwidth - 1);
mail@81 990 // // float chromasum = 0;
mail@81 991 // // float diffsum = 0;
mail@81 992 // // for (int k = 0; k < 12; k++) {
mail@81 993 // // for (int i = startIndex + 1; i < endIndex; i++) {
mail@81 994 // // chromasum += pow(fsOut[4][i].values[k],2);
mail@81 995 // // diffsum += abs(fsOut[4][i-1].values[k] - fsOut[4][i].values[k]);
mail@81 996 // // }
mail@81 997 // // }
mail@81 998 // // diffsum /= chromasum;
mail@81 999 // // musicityValue.push_back(diffsum);
mail@81 1000 // // count++;
mail@81 1001 // // }
mail@81 1002 // //
mail@81 1003 // // float musicityThreshold = 0.44;
mail@81 1004 // // if (m_stepSize == 4096) {
mail@81 1005 // // musicityThreshold = 0.74;
mail@81 1006 // // }
mail@81 1007 // // if (m_stepSize == 4410) {
mail@81 1008 // // musicityThreshold = 0.77;
mail@81 1009 // // }
mail@81 1010 // //
mail@81 1011 // // count = 0;
mail@81 1012 // // for (FeatureList::iterator it = fsOut[4].begin(); it != fsOut[4].end(); ++it) {
mail@81 1013 // // Feature f4 = *it;
mail@81 1014 // // Feature f8; // musicity
mail@81 1015 // // Feature f9; // musicity segmenter
mail@81 1016 // //
mail@81 1017 // // f8.hasTimestamp = true;
mail@81 1018 // // f8.timestamp = f4.timestamp;
mail@81 1019 // // f9.hasTimestamp = true;
mail@81 1020 // // f9.timestamp = f4.timestamp;
mail@81 1021 // //
mail@81 1022 // // int startIndex = max(count - musicitykernelwidth/2,0);
mail@81 1023 // // int endIndex = min(int(chordogram.size()), startIndex + musicitykernelwidth - 1);
mail@81 1024 // // int musicityCount = 0;
mail@81 1025 // // for (int i = startIndex; i <= endIndex; i++) {
mail@81 1026 // // if (musicityValue[i] > musicityThreshold) musicityCount++;
mail@81 1027 // // }
mail@81 1028 // // bool isSpeech = (2 * musicityCount > endIndex - startIndex + 1);
mail@81 1029 // //
mail@81 1030 // // if (isSpeech) {
mail@81 1031 // // if (oldlabeltype != 2) {
mail@81 1032 // // f9.label = "Speech";
mail@81 1033 // // fsOut[9].push_back(f9);
mail@81 1034 // // oldlabeltype = 2;
mail@81 1035 // // }
mail@81 1036 // // } else {
mail@81 1037 // // if (oldlabeltype != 1) {
mail@81 1038 // // f9.label = "Music";
mail@81 1039 // // fsOut[9].push_back(f9);
mail@81 1040 // // oldlabeltype = 1;
mail@81 1041 // // }
mail@81 1042 // // }
mail@81 1043 // // f8.values.push_back(musicityValue[count]);
mail@81 1044 // // fsOut[8].push_back(f8);
mail@81 1045 // // count++;
mail@81 1046 // // }
Chris@23 1047 return fsOut;
matthiasm@0 1048
matthiasm@0 1049 }
matthiasm@0 1050
Chris@35 1051 #endif