annotate NNLSBase.cpp @ 81:4270f3039ab0 matthiasm-plugin

dont remember, sorry
author Matthias Mauch <mail@matthiasmauch.net>
date Mon, 15 Nov 2010 11:01:36 +0900
parents 026a5c0ee2c2
children e5c16976513d
rev   line source
Chris@23 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
matthiasm@0 2
Chris@35 3 /*
Chris@35 4 NNLS-Chroma / Chordino
Chris@35 5
Chris@35 6 Audio feature extraction plugins for chromagram and chord
Chris@35 7 estimation.
Chris@35 8
Chris@35 9 Centre for Digital Music, Queen Mary University of London.
Chris@35 10 This file copyright 2008-2010 Matthias Mauch and QMUL.
Chris@35 11
Chris@35 12 This program is free software; you can redistribute it and/or
Chris@35 13 modify it under the terms of the GNU General Public License as
Chris@35 14 published by the Free Software Foundation; either version 2 of the
Chris@35 15 License, or (at your option) any later version. See the file
Chris@35 16 COPYING included with this distribution for more information.
Chris@35 17 */
Chris@35 18
Chris@35 19 #include "NNLSBase.h"
Chris@27 20
Chris@27 21 #include "chromamethods.h"
Chris@27 22
Chris@27 23 #include <cstdlib>
Chris@27 24 #include <fstream>
matthiasm@0 25 #include <cmath>
matthiasm@9 26
Chris@27 27 #include <algorithm>
matthiasm@0 28
matthiasm@0 29 const bool debug_on = false;
matthiasm@0 30
Chris@35 31 NNLSBase::NNLSBase(float inputSampleRate) :
Chris@23 32 Plugin(inputSampleRate),
Chris@35 33 m_logSpectrum(0),
Chris@23 34 m_blockSize(0),
Chris@23 35 m_stepSize(0),
Chris@23 36 m_lengthOfNoteIndex(0),
mail@80 37 m_meanTunings(0),
mail@80 38 m_localTunings(0),
mail@41 39 m_whitening(1.0),
Chris@23 40 m_preset(0.0),
Chris@23 41 m_localTuning(0),
Chris@23 42 m_kernelValue(0),
Chris@23 43 m_kernelFftIndex(0),
Chris@23 44 m_kernelNoteIndex(0),
Chris@23 45 m_dict(0),
mail@60 46 m_tuneLocal(0),
Chris@23 47 m_chorddict(0),
Chris@23 48 m_chordnames(0),
Chris@23 49 m_doNormalizeChroma(0),
mail@60 50 m_rollon(0),
matthiasm@42 51 m_s(0.7),
matthiasm@50 52 m_useNNLS(1),
mail@80 53 m_useHMM(1),
mail@80 54 sinvalues(0),
mail@80 55 cosvalues(0)
matthiasm@0 56 {
Chris@35 57 if (debug_on) cerr << "--> NNLSBase" << endl;
matthiasm@7 58
Chris@23 59 // make the *note* dictionary matrix
Chris@23 60 m_dict = new float[nNote * 84];
Chris@23 61 for (unsigned i = 0; i < nNote * 84; ++i) m_dict[i] = 0.0;
mail@41 62 dictionaryMatrix(m_dict, 0.7);
matthiasm@7 63
Chris@23 64 // get the *chord* dictionary from file (if the file exists)
Chris@23 65 m_chordnames = chordDictionary(&m_chorddict);
matthiasm@0 66 }
matthiasm@0 67
matthiasm@0 68
Chris@35 69 NNLSBase::~NNLSBase()
matthiasm@0 70 {
Chris@35 71 if (debug_on) cerr << "--> ~NNLSBase" << endl;
Chris@23 72 delete [] m_dict;
matthiasm@0 73 }
matthiasm@0 74
matthiasm@0 75 string
Chris@35 76 NNLSBase::getMaker() const
matthiasm@0 77 {
Chris@23 78 if (debug_on) cerr << "--> getMaker" << endl;
matthiasm@0 79 // Your name here
matthiasm@0 80 return "Matthias Mauch";
matthiasm@0 81 }
matthiasm@0 82
matthiasm@0 83 int
Chris@35 84 NNLSBase::getPluginVersion() const
matthiasm@0 85 {
Chris@23 86 if (debug_on) cerr << "--> getPluginVersion" << endl;
matthiasm@0 87 // Increment this each time you release a version that behaves
matthiasm@0 88 // differently from the previous one
matthiasm@0 89 return 1;
matthiasm@0 90 }
matthiasm@0 91
matthiasm@0 92 string
Chris@35 93 NNLSBase::getCopyright() const
matthiasm@0 94 {
Chris@23 95 if (debug_on) cerr << "--> getCopyright" << endl;
matthiasm@0 96 // This function is not ideally named. It does not necessarily
matthiasm@0 97 // need to say who made the plugin -- getMaker does that -- but it
matthiasm@0 98 // should indicate the terms under which it is distributed. For
matthiasm@0 99 // example, "Copyright (year). All Rights Reserved", or "GPL"
Chris@35 100 return "GPL";
matthiasm@0 101 }
matthiasm@0 102
Chris@35 103 NNLSBase::InputDomain
Chris@35 104 NNLSBase::getInputDomain() const
matthiasm@0 105 {
Chris@23 106 if (debug_on) cerr << "--> getInputDomain" << endl;
matthiasm@0 107 return FrequencyDomain;
matthiasm@0 108 }
matthiasm@0 109
matthiasm@0 110 size_t
Chris@35 111 NNLSBase::getPreferredBlockSize() const
matthiasm@0 112 {
Chris@23 113 if (debug_on) cerr << "--> getPreferredBlockSize" << endl;
matthiasm@0 114 return 16384; // 0 means "I can handle any block size"
matthiasm@0 115 }
matthiasm@0 116
matthiasm@0 117 size_t
Chris@35 118 NNLSBase::getPreferredStepSize() const
matthiasm@0 119 {
Chris@23 120 if (debug_on) cerr << "--> getPreferredStepSize" << endl;
matthiasm@0 121 return 2048; // 0 means "anything sensible"; in practice this
Chris@23 122 // means the same as the block size for TimeDomain
Chris@23 123 // plugins, or half of it for FrequencyDomain plugins
matthiasm@0 124 }
matthiasm@0 125
matthiasm@0 126 size_t
Chris@35 127 NNLSBase::getMinChannelCount() const
matthiasm@0 128 {
Chris@23 129 if (debug_on) cerr << "--> getMinChannelCount" << endl;
matthiasm@0 130 return 1;
matthiasm@0 131 }
matthiasm@0 132
matthiasm@0 133 size_t
Chris@35 134 NNLSBase::getMaxChannelCount() const
matthiasm@0 135 {
Chris@23 136 if (debug_on) cerr << "--> getMaxChannelCount" << endl;
matthiasm@0 137 return 1;
matthiasm@0 138 }
matthiasm@0 139
Chris@35 140 NNLSBase::ParameterList
Chris@35 141 NNLSBase::getParameterDescriptors() const
matthiasm@0 142 {
Chris@23 143 if (debug_on) cerr << "--> getParameterDescriptors" << endl;
matthiasm@0 144 ParameterList list;
matthiasm@0 145
matthiasm@42 146 ParameterDescriptor d;
matthiasm@42 147 d.identifier = "useNNLS";
matthiasm@42 148 d.name = "use approximate transcription (NNLS)";
matthiasm@42 149 d.description = "Toggles approximate transcription (NNLS).";
matthiasm@42 150 d.unit = "";
matthiasm@42 151 d.minValue = 0.0;
matthiasm@42 152 d.maxValue = 1.0;
matthiasm@42 153 d.defaultValue = 1.0;
matthiasm@42 154 d.isQuantized = true;
matthiasm@42 155 d.quantizeStep = 1.0;
matthiasm@42 156 list.push_back(d);
matthiasm@42 157
mail@41 158 ParameterDescriptor d0;
mail@41 159 d0.identifier = "rollon";
mail@41 160 d0.name = "spectral roll-on";
matthiasm@58 161 d0.description = "Consider the cumulative energy spectrum (from low to high frequencies). All bins below the first bin whose cumulative energy exceeds the quantile [spectral roll on] x [total energy] will be set to 0. A value of 0 means that no bins will be changed.";
matthiasm@59 162 d0.unit = "%";
mail@41 163 d0.minValue = 0;
matthiasm@59 164 d0.maxValue = 5;
mail@41 165 d0.defaultValue = 0;
matthiasm@48 166 d0.isQuantized = true;
matthiasm@59 167 d0.quantizeStep = 0.5;
mail@41 168 list.push_back(d0);
matthiasm@4 169
matthiasm@4 170 ParameterDescriptor d1;
matthiasm@4 171 d1.identifier = "tuningmode";
matthiasm@4 172 d1.name = "tuning mode";
matthiasm@4 173 d1.description = "Tuning can be performed locally or on the whole extraction segment. Local tuning is only advisable when the tuning is likely to change over the audio, for example in podcasts, or in a cappella singing.";
matthiasm@4 174 d1.unit = "";
matthiasm@4 175 d1.minValue = 0;
matthiasm@4 176 d1.maxValue = 1;
matthiasm@4 177 d1.defaultValue = 0;
matthiasm@4 178 d1.isQuantized = true;
matthiasm@4 179 d1.valueNames.push_back("global tuning");
matthiasm@4 180 d1.valueNames.push_back("local tuning");
matthiasm@4 181 d1.quantizeStep = 1.0;
matthiasm@4 182 list.push_back(d1);
matthiasm@4 183
mail@41 184 ParameterDescriptor d2;
mail@41 185 d2.identifier = "whitening";
mail@41 186 d2.name = "spectral whitening";
mail@41 187 d2.description = "Spectral whitening: no whitening - 0; whitening - 1.";
mail@41 188 d2.unit = "";
mail@41 189 d2.isQuantized = true;
mail@41 190 d2.minValue = 0.0;
mail@41 191 d2.maxValue = 1.0;
mail@41 192 d2.defaultValue = 1.0;
mail@41 193 d2.isQuantized = false;
mail@41 194 list.push_back(d2);
mail@41 195
mail@41 196 ParameterDescriptor d3;
mail@41 197 d3.identifier = "s";
mail@41 198 d3.name = "spectral shape";
mail@41 199 d3.description = "Determines how individual notes in the note dictionary look: higher values mean more dominant higher harmonics.";
mail@41 200 d3.unit = "";
mail@41 201 d3.minValue = 0.5;
mail@41 202 d3.maxValue = 0.9;
mail@41 203 d3.defaultValue = 0.7;
mail@41 204 d3.isQuantized = false;
mail@41 205 list.push_back(d3);
mail@41 206
Chris@23 207 ParameterDescriptor d4;
matthiasm@12 208 d4.identifier = "chromanormalize";
matthiasm@12 209 d4.name = "chroma normalization";
matthiasm@12 210 d4.description = "How shall the chroma vector be normalized?";
matthiasm@12 211 d4.unit = "";
matthiasm@12 212 d4.minValue = 0;
matthiasm@13 213 d4.maxValue = 3;
matthiasm@12 214 d4.defaultValue = 0;
matthiasm@12 215 d4.isQuantized = true;
matthiasm@13 216 d4.valueNames.push_back("none");
matthiasm@13 217 d4.valueNames.push_back("maximum norm");
Chris@23 218 d4.valueNames.push_back("L1 norm");
Chris@23 219 d4.valueNames.push_back("L2 norm");
matthiasm@12 220 d4.quantizeStep = 1.0;
matthiasm@12 221 list.push_back(d4);
matthiasm@4 222
matthiasm@0 223 return list;
matthiasm@0 224 }
matthiasm@0 225
matthiasm@0 226 float
Chris@35 227 NNLSBase::getParameter(string identifier) const
matthiasm@0 228 {
Chris@23 229 if (debug_on) cerr << "--> getParameter" << endl;
matthiasm@42 230 if (identifier == "useNNLS") {
matthiasm@42 231 return m_useNNLS;
matthiasm@0 232 }
matthiasm@0 233
mail@41 234 if (identifier == "whitening") {
mail@41 235 return m_whitening;
mail@41 236 }
mail@41 237
mail@41 238 if (identifier == "s") {
mail@41 239 return m_s;
matthiasm@0 240 }
matthiasm@17 241
Chris@23 242 if (identifier == "rollon") {
matthiasm@17 243 return m_rollon;
matthiasm@17 244 }
matthiasm@0 245
matthiasm@0 246 if (identifier == "tuningmode") {
matthiasm@0 247 if (m_tuneLocal) {
matthiasm@0 248 return 1.0;
matthiasm@0 249 } else {
matthiasm@0 250 return 0.0;
matthiasm@0 251 }
matthiasm@0 252 }
Chris@23 253 if (identifier == "preset") {
Chris@23 254 return m_preset;
matthiasm@3 255 }
Chris@23 256 if (identifier == "chromanormalize") {
Chris@23 257 return m_doNormalizeChroma;
matthiasm@12 258 }
matthiasm@50 259
matthiasm@50 260 if (identifier == "useHMM") {
matthiasm@50 261 return m_useHMM;
matthiasm@50 262 }
matthiasm@50 263
matthiasm@0 264 return 0;
matthiasm@0 265
matthiasm@0 266 }
matthiasm@0 267
matthiasm@0 268 void
Chris@35 269 NNLSBase::setParameter(string identifier, float value)
matthiasm@0 270 {
Chris@23 271 if (debug_on) cerr << "--> setParameter" << endl;
matthiasm@42 272 if (identifier == "useNNLS") {
matthiasm@42 273 m_useNNLS = (int) value;
matthiasm@0 274 }
matthiasm@0 275
mail@41 276 if (identifier == "whitening") {
mail@41 277 m_whitening = value;
matthiasm@0 278 }
matthiasm@0 279
mail@41 280 if (identifier == "s") {
mail@41 281 m_s = value;
mail@41 282 }
mail@41 283
matthiasm@50 284 if (identifier == "useHMM") {
matthiasm@50 285 m_useHMM = value;
matthiasm@50 286 }
matthiasm@50 287
matthiasm@0 288 if (identifier == "tuningmode") {
mail@60 289 // m_tuneLocal = (value > 0) ? true : false;
mail@60 290 m_tuneLocal = value;
matthiasm@0 291 // cerr << "m_tuneLocal :" << m_tuneLocal << endl;
matthiasm@0 292 }
matthiasm@42 293 // if (identifier == "preset") {
matthiasm@42 294 // m_preset = value;
matthiasm@42 295 // if (m_preset == 0.0) {
matthiasm@42 296 // m_tuneLocal = false;
matthiasm@42 297 // m_whitening = 1.0;
matthiasm@42 298 // m_dictID = 0.0;
matthiasm@42 299 // }
matthiasm@42 300 // if (m_preset == 1.0) {
matthiasm@42 301 // m_tuneLocal = false;
matthiasm@42 302 // m_whitening = 1.0;
matthiasm@42 303 // m_dictID = 1.0;
matthiasm@42 304 // }
matthiasm@42 305 // if (m_preset == 2.0) {
matthiasm@42 306 // m_tuneLocal = false;
matthiasm@42 307 // m_whitening = 0.7;
matthiasm@42 308 // m_dictID = 0.0;
matthiasm@42 309 // }
matthiasm@42 310 // }
Chris@23 311 if (identifier == "chromanormalize") {
Chris@23 312 m_doNormalizeChroma = value;
Chris@23 313 }
matthiasm@17 314
Chris@23 315 if (identifier == "rollon") {
Chris@23 316 m_rollon = value;
Chris@23 317 }
matthiasm@0 318 }
matthiasm@0 319
Chris@35 320 NNLSBase::ProgramList
Chris@35 321 NNLSBase::getPrograms() const
matthiasm@0 322 {
Chris@23 323 if (debug_on) cerr << "--> getPrograms" << endl;
matthiasm@0 324 ProgramList list;
matthiasm@0 325
matthiasm@0 326 // If you have no programs, return an empty list (or simply don't
matthiasm@0 327 // implement this function or getCurrentProgram/selectProgram)
matthiasm@0 328
matthiasm@0 329 return list;
matthiasm@0 330 }
matthiasm@0 331
matthiasm@0 332 string
Chris@35 333 NNLSBase::getCurrentProgram() const
matthiasm@0 334 {
Chris@23 335 if (debug_on) cerr << "--> getCurrentProgram" << endl;
matthiasm@0 336 return ""; // no programs
matthiasm@0 337 }
matthiasm@0 338
matthiasm@0 339 void
Chris@35 340 NNLSBase::selectProgram(string name)
matthiasm@0 341 {
Chris@23 342 if (debug_on) cerr << "--> selectProgram" << endl;
matthiasm@0 343 }
matthiasm@0 344
matthiasm@0 345
matthiasm@0 346 bool
Chris@35 347 NNLSBase::initialise(size_t channels, size_t stepSize, size_t blockSize)
matthiasm@0 348 {
Chris@23 349 if (debug_on) {
Chris@23 350 cerr << "--> initialise";
Chris@23 351 }
matthiasm@1 352
mail@80 353 // make things for tuning estimation
mail@80 354 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 355 sinvalues.push_back(sin(2*M_PI*(iBPS*1.0/nBPS)));
mail@80 356 cosvalues.push_back(cos(2*M_PI*(iBPS*1.0/nBPS)));
mail@80 357 }
mail@80 358
mail@80 359
mail@80 360 // make hamming window of length 1/2 octave
mail@76 361 int hamwinlength = nBPS * 6 + 1;
mail@76 362 float hamwinsum = 0;
mail@76 363 for (int i = 0; i < hamwinlength; ++i) {
mail@76 364 hw.push_back(0.54 - 0.46 * cos((2*M_PI*i)/(hamwinlength-1)));
mail@76 365 hamwinsum += 0.54 - 0.46 * cos((2*M_PI*i)/(hamwinlength-1));
mail@76 366 }
mail@77 367 for (int i = 0; i < hamwinlength; ++i) hw[i] = hw[i] / hamwinsum;
mail@80 368
mail@80 369
mail@80 370 // initialise the tuning
mail@80 371 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 372 m_meanTunings.push_back(0);
mail@80 373 m_localTunings.push_back(0);
mail@80 374 }
mail@76 375
matthiasm@0 376 if (channels < getMinChannelCount() ||
matthiasm@0 377 channels > getMaxChannelCount()) return false;
matthiasm@0 378 m_blockSize = blockSize;
matthiasm@0 379 m_stepSize = stepSize;
Chris@35 380 m_frameCount = 0;
mail@77 381 int tempn = nNote * m_blockSize/2;
Chris@23 382 // cerr << "length of tempkernel : " << tempn << endl;
Chris@23 383 float *tempkernel;
matthiasm@1 384
Chris@23 385 tempkernel = new float[tempn];
matthiasm@1 386
Chris@23 387 logFreqMatrix(m_inputSampleRate, m_blockSize, tempkernel);
Chris@23 388 m_kernelValue.clear();
Chris@23 389 m_kernelFftIndex.clear();
Chris@23 390 m_kernelNoteIndex.clear();
Chris@23 391 int countNonzero = 0;
Chris@23 392 for (unsigned iNote = 0; iNote < nNote; ++iNote) { // I don't know if this is wise: manually making a sparse matrix
Chris@23 393 for (unsigned iFFT = 0; iFFT < blockSize/2; ++iFFT) {
Chris@23 394 if (tempkernel[iFFT + blockSize/2 * iNote] > 0) {
Chris@23 395 m_kernelValue.push_back(tempkernel[iFFT + blockSize/2 * iNote]);
Chris@23 396 if (tempkernel[iFFT + blockSize/2 * iNote] > 0) {
Chris@23 397 countNonzero++;
Chris@23 398 }
Chris@23 399 m_kernelFftIndex.push_back(iFFT);
Chris@23 400 m_kernelNoteIndex.push_back(iNote);
Chris@23 401 }
Chris@23 402 }
Chris@23 403 }
Chris@23 404 // cerr << "nonzero count : " << countNonzero << endl;
Chris@23 405 delete [] tempkernel;
Chris@35 406 /*
Chris@23 407 ofstream myfile;
Chris@23 408 myfile.open ("matrix.txt");
matthiasm@3 409 // myfile << "Writing this to a file.\n";
Chris@23 410 for (int i = 0; i < nNote * 84; ++i) {
Chris@23 411 myfile << m_dict[i] << endl;
Chris@23 412 }
matthiasm@3 413 myfile.close();
Chris@35 414 */
matthiasm@0 415 return true;
matthiasm@0 416 }
matthiasm@0 417
matthiasm@0 418 void
Chris@35 419 NNLSBase::reset()
matthiasm@0 420 {
Chris@23 421 if (debug_on) cerr << "--> reset";
matthiasm@4 422
matthiasm@0 423 // Clear buffers, reset stored values, etc
Chris@35 424 m_frameCount = 0;
matthiasm@42 425 // m_dictID = 0;
Chris@35 426 m_logSpectrum.clear();
mail@80 427 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 428 m_meanTunings[iBPS] = 0;
mail@80 429 m_localTunings[iBPS] = 0;
mail@80 430 }
Chris@23 431 m_localTuning.clear();
matthiasm@0 432 }
matthiasm@0 433
Chris@35 434 void
Chris@35 435 NNLSBase::baseProcess(const float *const *inputBuffers, Vamp::RealTime timestamp)
matthiasm@0 436 {
Chris@35 437 m_frameCount++;
Chris@23 438 float *magnitude = new float[m_blockSize/2];
matthiasm@0 439
Chris@23 440 const float *fbuf = inputBuffers[0];
Chris@23 441 float energysum = 0;
Chris@23 442 // make magnitude
Chris@23 443 float maxmag = -10000;
Chris@23 444 for (size_t iBin = 0; iBin < m_blockSize/2; iBin++) {
Chris@23 445 magnitude[iBin] = sqrt(fbuf[2 * iBin] * fbuf[2 * iBin] +
Chris@23 446 fbuf[2 * iBin + 1] * fbuf[2 * iBin + 1]);
Chris@23 447 if (maxmag < magnitude[iBin]) maxmag = magnitude[iBin];
Chris@23 448 if (m_rollon > 0) {
Chris@23 449 energysum += pow(magnitude[iBin],2);
Chris@23 450 }
Chris@23 451 }
matthiasm@14 452
Chris@23 453 float cumenergy = 0;
Chris@23 454 if (m_rollon > 0) {
Chris@23 455 for (size_t iBin = 2; iBin < m_blockSize/2; iBin++) {
Chris@23 456 cumenergy += pow(magnitude[iBin],2);
matthiasm@59 457 if (cumenergy < energysum * m_rollon / 100) magnitude[iBin-2] = 0;
Chris@23 458 else break;
Chris@23 459 }
Chris@23 460 }
matthiasm@17 461
Chris@23 462 if (maxmag < 2) {
Chris@23 463 // cerr << "timestamp " << timestamp << ": very low magnitude, setting magnitude to all zeros" << endl;
Chris@23 464 for (size_t iBin = 0; iBin < m_blockSize/2; iBin++) {
Chris@23 465 magnitude[iBin] = 0;
Chris@23 466 }
Chris@23 467 }
matthiasm@4 468
Chris@23 469 // note magnitude mapping using pre-calculated matrix
Chris@23 470 float *nm = new float[nNote]; // note magnitude
Chris@23 471 for (size_t iNote = 0; iNote < nNote; iNote++) {
Chris@23 472 nm[iNote] = 0; // initialise as 0
Chris@23 473 }
Chris@23 474 int binCount = 0;
Chris@23 475 for (vector<float>::iterator it = m_kernelValue.begin(); it != m_kernelValue.end(); ++it) {
Chris@23 476 // cerr << ".";
Chris@23 477 nm[m_kernelNoteIndex[binCount]] += magnitude[m_kernelFftIndex[binCount]] * m_kernelValue[binCount];
Chris@23 478 // cerr << m_kernelFftIndex[binCount] << " -- " << magnitude[m_kernelFftIndex[binCount]] << " -- "<< m_kernelValue[binCount] << endl;
Chris@23 479 binCount++;
Chris@23 480 }
Chris@23 481 // cerr << nm[20];
Chris@23 482 // cerr << endl;
matthiasm@0 483
matthiasm@0 484
Chris@35 485 float one_over_N = 1.0/m_frameCount;
matthiasm@0 486 // update means of complex tuning variables
mail@80 487 for (int iBPS = 0; iBPS < nBPS; ++iBPS) m_meanTunings[iBPS] *= float(m_frameCount-1)*one_over_N;
mail@80 488
mail@80 489 for (int iTone = 0; iTone < round(nNote*0.62/nBPS)*nBPS+1; iTone = iTone + nBPS) {
mail@80 490 for (int iBPS = 0; iBPS < nBPS; ++iBPS) m_meanTunings[iBPS] += nm[iTone + iBPS]*one_over_N;
Chris@23 491 float ratioOld = 0.997;
mail@80 492 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 493 m_localTunings[iBPS] *= ratioOld;
mail@80 494 m_localTunings[iBPS] += nm[iTone + iBPS] * (1 - ratioOld);
mail@80 495 }
matthiasm@0 496 }
matthiasm@0 497 // if (m_tuneLocal) {
Chris@23 498 // local tuning
mail@80 499 // float localTuningImag = sinvalue * m_localTunings[1] - sinvalue * m_localTunings[2];
mail@80 500 // float localTuningReal = m_localTunings[0] + cosvalue * m_localTunings[1] + cosvalue * m_localTunings[2];
mail@80 501
mail@80 502 float localTuningImag = 0;
mail@80 503 float localTuningReal = 0;
mail@80 504 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 505 localTuningReal += m_localTunings[iBPS] * cosvalues[iBPS];
mail@80 506 localTuningImag += m_localTunings[iBPS] * sinvalues[iBPS];
mail@80 507 }
mail@80 508
Chris@23 509 float normalisedtuning = atan2(localTuningImag, localTuningReal)/(2*M_PI);
Chris@23 510 m_localTuning.push_back(normalisedtuning);
matthiasm@0 511
Chris@23 512 Feature f1; // logfreqspec
Chris@23 513 f1.hasTimestamp = true;
matthiasm@0 514 f1.timestamp = timestamp;
Chris@23 515 for (size_t iNote = 0; iNote < nNote; iNote++) {
Chris@23 516 f1.values.push_back(nm[iNote]);
Chris@23 517 }
matthiasm@0 518
matthiasm@0 519 // deletes
matthiasm@0 520 delete[] magnitude;
matthiasm@0 521 delete[] nm;
matthiasm@0 522
Chris@35 523 m_logSpectrum.push_back(f1); // remember note magnitude
matthiasm@0 524 }
matthiasm@0 525
Chris@35 526
Chris@35 527 #ifdef NOT_DEFINED
Chris@35 528
Chris@35 529 NNLSBase::FeatureSet
Chris@35 530 NNLSBase::getRemainingFeatures()
matthiasm@0 531 {
mail@81 532 // if (debug_on) cerr << "--> getRemainingFeatures" << endl;
mail@81 533 FeatureSet fsOut;
mail@81 534 // if (m_logSpectrum.size() == 0) return fsOut;
mail@81 535 // int nChord = m_chordnames.size();
mail@81 536 // //
mail@81 537 // /** Calculate Tuning
mail@81 538 // calculate tuning from (using the angle of the complex number defined by the
mail@81 539 // cumulative mean real and imag values)
mail@81 540 // **/
mail@81 541 // float meanTuningImag = sinvalue * m_meanTunings[1] - sinvalue * m_meanTunings[2];
mail@81 542 // float meanTuningReal = m_meanTunings[0] + cosvalue * m_meanTunings[1] + cosvalue * m_meanTunings[2];
mail@81 543 // float cumulativetuning = 440 * pow(2,atan2(meanTuningImag, meanTuningReal)/(24*M_PI));
mail@81 544 // float normalisedtuning = atan2(meanTuningImag, meanTuningReal)/(2*M_PI);
mail@81 545 // int intShift = floor(normalisedtuning * 3);
mail@81 546 // float floatShift = normalisedtuning * 3 - intShift; // floatShift is a really bad name for this
mail@81 547 //
mail@81 548 // char buffer0 [50];
mail@81 549 //
mail@81 550 // sprintf(buffer0, "estimated tuning: %0.1f Hz", cumulativetuning);
mail@81 551 //
mail@81 552 // // cerr << "normalisedtuning: " << normalisedtuning << '\n';
mail@81 553 //
mail@81 554 // // push tuning to FeatureSet fsOut
mail@81 555 // Feature f0; // tuning
mail@81 556 // f0.hasTimestamp = true;
mail@81 557 // f0.timestamp = Vamp::RealTime::frame2RealTime(0, lrintf(m_inputSampleRate));;
mail@81 558 // f0.label = buffer0;
mail@81 559 // fsOut[0].push_back(f0);
mail@81 560 //
mail@81 561 // /** Tune Log-Frequency Spectrogram
mail@81 562 // calculate a tuned log-frequency spectrogram (f2): use the tuning estimated above (kinda f0) to
mail@81 563 // perform linear interpolation on the existing log-frequency spectrogram (kinda f1).
mail@81 564 // **/
mail@81 565 // cerr << endl << "[NNLS Chroma Plugin] Tuning Log-Frequency Spectrogram ... ";
mail@81 566 //
mail@81 567 // float tempValue = 0;
mail@81 568 // float dbThreshold = 0; // relative to the background spectrum
mail@81 569 // float thresh = pow(10,dbThreshold/20);
mail@81 570 // // cerr << "tune local ? " << m_tuneLocal << endl;
mail@81 571 // int count = 0;
mail@81 572 //
mail@81 573 // for (FeatureList::iterator i = m_logSpectrum.begin(); i != m_logSpectrum.end(); ++i) {
mail@81 574 // Feature f1 = *i;
mail@81 575 // Feature f2; // tuned log-frequency spectrum
mail@81 576 // f2.hasTimestamp = true;
mail@81 577 // f2.timestamp = f1.timestamp;
mail@81 578 // f2.values.push_back(0.0); f2.values.push_back(0.0); // set lower edge to zero
mail@81 579 //
mail@81 580 // if (m_tuneLocal == 1.0) {
mail@81 581 // intShift = floor(m_localTuning[count] * 3);
mail@81 582 // floatShift = m_localTuning[count] * 3 - intShift; // floatShift is a really bad name for this
mail@81 583 // }
mail@81 584 //
mail@81 585 // // cerr << intShift << " " << floatShift << endl;
mail@81 586 //
mail@81 587 // for (unsigned k = 2; k < f1.values.size() - 3; ++k) { // interpolate all inner bins
mail@81 588 // tempValue = f1.values[k + intShift] * (1-floatShift) + f1.values[k+intShift+1] * floatShift;
mail@81 589 // f2.values.push_back(tempValue);
mail@81 590 // }
mail@81 591 //
mail@81 592 // f2.values.push_back(0.0); f2.values.push_back(0.0); f2.values.push_back(0.0); // upper edge
mail@81 593 // vector<float> runningmean = SpecialConvolution(f2.values,hw);
mail@81 594 // vector<float> runningstd;
mail@81 595 // for (int i = 0; i < nNote; i++) { // first step: squared values into vector (variance)
mail@81 596 // runningstd.push_back((f2.values[i] - runningmean[i]) * (f2.values[i] - runningmean[i]));
mail@81 597 // }
mail@81 598 // runningstd = SpecialConvolution(runningstd,hw); // second step convolve
mail@81 599 // for (int i = 0; i < nNote; i++) {
mail@81 600 // runningstd[i] = sqrt(runningstd[i]); // square root to finally have running std
mail@81 601 // if (runningstd[i] > 0) {
mail@81 602 // // f2.values[i] = (f2.values[i] / runningmean[i]) > thresh ?
mail@81 603 // // (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0;
mail@81 604 // f2.values[i] = (f2.values[i] - runningmean[i]) > 0 ?
mail@81 605 // (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0;
mail@81 606 // }
mail@81 607 // if (f2.values[i] < 0) {
mail@81 608 // cerr << "ERROR: negative value in logfreq spectrum" << endl;
mail@81 609 // }
mail@81 610 // }
mail@81 611 // fsOut[2].push_back(f2);
mail@81 612 // count++;
mail@81 613 // }
mail@81 614 // cerr << "done." << endl;
mail@81 615 //
mail@81 616 // /** Semitone spectrum and chromagrams
mail@81 617 // Semitone-spaced log-frequency spectrum derived from the tuned log-freq spectrum above. the spectrum
mail@81 618 // is inferred using a non-negative least squares algorithm.
mail@81 619 // Three different kinds of chromagram are calculated, "treble", "bass", and "both" (which means
mail@81 620 // bass and treble stacked onto each other).
mail@81 621 // **/
mail@81 622 // if (m_useNNLS == 0) {
mail@81 623 // cerr << "[NNLS Chroma Plugin] Mapping to semitone spectrum and chroma ... ";
mail@81 624 // } else {
mail@81 625 // cerr << "[NNLS Chroma Plugin] Performing NNLS and mapping to chroma ... ";
mail@81 626 // }
Chris@23 627 //
mail@81 628 //
mail@81 629 // vector<vector<float> > chordogram;
mail@81 630 // vector<vector<int> > scoreChordogram;
mail@81 631 // vector<float> chordchange = vector<float>(fsOut[2].size(),0);
mail@81 632 // vector<float> oldchroma = vector<float>(12,0);
mail@81 633 // vector<float> oldbasschroma = vector<float>(12,0);
mail@81 634 // count = 0;
mail@81 635 //
mail@81 636 // for (FeatureList::iterator it = fsOut[2].begin(); it != fsOut[2].end(); ++it) {
mail@81 637 // Feature f2 = *it; // logfreq spectrum
mail@81 638 // Feature f3; // semitone spectrum
mail@81 639 // Feature f4; // treble chromagram
mail@81 640 // Feature f5; // bass chromagram
mail@81 641 // Feature f6; // treble and bass chromagram
mail@81 642 //
mail@81 643 // f3.hasTimestamp = true;
mail@81 644 // f3.timestamp = f2.timestamp;
mail@81 645 //
mail@81 646 // f4.hasTimestamp = true;
mail@81 647 // f4.timestamp = f2.timestamp;
mail@81 648 //
mail@81 649 // f5.hasTimestamp = true;
mail@81 650 // f5.timestamp = f2.timestamp;
mail@81 651 //
mail@81 652 // f6.hasTimestamp = true;
mail@81 653 // f6.timestamp = f2.timestamp;
mail@81 654 //
mail@81 655 // float b[nNote];
mail@81 656 //
mail@81 657 // bool some_b_greater_zero = false;
mail@81 658 // float sumb = 0;
mail@81 659 // for (int i = 0; i < nNote; i++) {
mail@81 660 // // b[i] = m_dict[(nNote * count + i) % (nNote * 84)];
mail@81 661 // b[i] = f2.values[i];
mail@81 662 // sumb += b[i];
mail@81 663 // if (b[i] > 0) {
mail@81 664 // some_b_greater_zero = true;
mail@81 665 // }
mail@81 666 // }
mail@81 667 //
mail@81 668 // // here's where the non-negative least squares algorithm calculates the note activation x
mail@81 669 //
mail@81 670 // vector<float> chroma = vector<float>(12, 0);
mail@81 671 // vector<float> basschroma = vector<float>(12, 0);
mail@81 672 // float currval;
mail@81 673 // unsigned iSemitone = 0;
mail@81 674 //
mail@81 675 // if (some_b_greater_zero) {
mail@81 676 // if (m_useNNLS == 0) {
mail@81 677 // for (unsigned iNote = 2; iNote < nNote - 2; iNote += 3) {
mail@81 678 // currval = 0;
mail@81 679 // currval += b[iNote + 1 + -1] * 0.5;
mail@81 680 // currval += b[iNote + 1 + 0] * 1.0;
mail@81 681 // currval += b[iNote + 1 + 1] * 0.5;
mail@81 682 // f3.values.push_back(currval);
mail@81 683 // chroma[iSemitone % 12] += currval * treblewindow[iSemitone];
mail@81 684 // basschroma[iSemitone % 12] += currval * basswindow[iSemitone];
mail@81 685 // iSemitone++;
mail@81 686 // }
mail@81 687 //
mail@81 688 // } else {
mail@81 689 // float x[84+1000];
mail@81 690 // for (int i = 1; i < 1084; ++i) x[i] = 1.0;
mail@81 691 // vector<int> signifIndex;
mail@81 692 // int index=0;
mail@81 693 // sumb /= 84.0;
mail@81 694 // for (unsigned iNote = 2; iNote < nNote - 2; iNote += 3) {
mail@81 695 // float currval = 0;
mail@81 696 // currval += b[iNote + 1 + -1];
mail@81 697 // currval += b[iNote + 1 + 0];
mail@81 698 // currval += b[iNote + 1 + 1];
mail@81 699 // if (currval > 0) signifIndex.push_back(index);
mail@81 700 // f3.values.push_back(0); // fill the values, change later
mail@81 701 // index++;
mail@81 702 // }
mail@81 703 // float rnorm;
mail@81 704 // float w[84+1000];
mail@81 705 // float zz[84+1000];
mail@81 706 // int indx[84+1000];
mail@81 707 // int mode;
mail@81 708 // int dictsize = nNote*signifIndex.size();
mail@81 709 // // cerr << "dictsize is " << dictsize << "and values size" << f3.values.size()<< endl;
mail@81 710 // float *curr_dict = new float[dictsize];
mail@81 711 // for (unsigned iNote = 0; iNote < signifIndex.size(); ++iNote) {
mail@81 712 // for (unsigned iBin = 0; iBin < nNote; iBin++) {
mail@81 713 // curr_dict[iNote * nNote + iBin] = 1.0 * m_dict[signifIndex[iNote] * nNote + iBin];
mail@81 714 // }
mail@81 715 // }
mail@81 716 // nnls(curr_dict, nNote, nNote, signifIndex.size(), b, x, &rnorm, w, zz, indx, &mode);
mail@81 717 // delete [] curr_dict;
mail@81 718 // for (unsigned iNote = 0; iNote < signifIndex.size(); ++iNote) {
mail@81 719 // f3.values[signifIndex[iNote]] = x[iNote];
mail@81 720 // // cerr << mode << endl;
mail@81 721 // chroma[signifIndex[iNote] % 12] += x[iNote] * treblewindow[signifIndex[iNote]];
mail@81 722 // basschroma[signifIndex[iNote] % 12] += x[iNote] * basswindow[signifIndex[iNote]];
mail@81 723 // }
mail@81 724 // }
mail@81 725 // }
mail@81 726 //
mail@81 727 //
mail@81 728 //
mail@81 729 //
mail@81 730 // f4.values = chroma;
mail@81 731 // f5.values = basschroma;
mail@81 732 // chroma.insert(chroma.begin(), basschroma.begin(), basschroma.end()); // just stack the both chromas
mail@81 733 // f6.values = chroma;
mail@81 734 //
mail@81 735 // if (m_doNormalizeChroma > 0) {
mail@81 736 // vector<float> chromanorm = vector<float>(3,0);
mail@81 737 // switch (int(m_doNormalizeChroma)) {
mail@81 738 // case 0: // should never end up here
mail@81 739 // break;
mail@81 740 // case 1:
mail@81 741 // chromanorm[0] = *max_element(f4.values.begin(), f4.values.end());
mail@81 742 // chromanorm[1] = *max_element(f5.values.begin(), f5.values.end());
mail@81 743 // chromanorm[2] = max(chromanorm[0], chromanorm[1]);
mail@81 744 // break;
mail@81 745 // case 2:
mail@81 746 // for (vector<float>::iterator it = f4.values.begin(); it != f4.values.end(); ++it) {
mail@81 747 // chromanorm[0] += *it;
mail@81 748 // }
mail@81 749 // for (vector<float>::iterator it = f5.values.begin(); it != f5.values.end(); ++it) {
mail@81 750 // chromanorm[1] += *it;
mail@81 751 // }
mail@81 752 // for (vector<float>::iterator it = f6.values.begin(); it != f6.values.end(); ++it) {
mail@81 753 // chromanorm[2] += *it;
mail@81 754 // }
mail@81 755 // break;
mail@81 756 // case 3:
mail@81 757 // for (vector<float>::iterator it = f4.values.begin(); it != f4.values.end(); ++it) {
mail@81 758 // chromanorm[0] += pow(*it,2);
mail@81 759 // }
mail@81 760 // chromanorm[0] = sqrt(chromanorm[0]);
mail@81 761 // for (vector<float>::iterator it = f5.values.begin(); it != f5.values.end(); ++it) {
mail@81 762 // chromanorm[1] += pow(*it,2);
mail@81 763 // }
mail@81 764 // chromanorm[1] = sqrt(chromanorm[1]);
mail@81 765 // for (vector<float>::iterator it = f6.values.begin(); it != f6.values.end(); ++it) {
mail@81 766 // chromanorm[2] += pow(*it,2);
mail@81 767 // }
mail@81 768 // chromanorm[2] = sqrt(chromanorm[2]);
mail@81 769 // break;
mail@81 770 // }
mail@81 771 // if (chromanorm[0] > 0) {
mail@81 772 // for (int i = 0; i < f4.values.size(); i++) {
mail@81 773 // f4.values[i] /= chromanorm[0];
mail@81 774 // }
mail@81 775 // }
mail@81 776 // if (chromanorm[1] > 0) {
mail@81 777 // for (int i = 0; i < f5.values.size(); i++) {
mail@81 778 // f5.values[i] /= chromanorm[1];
mail@81 779 // }
mail@81 780 // }
mail@81 781 // if (chromanorm[2] > 0) {
mail@81 782 // for (int i = 0; i < f6.values.size(); i++) {
mail@81 783 // f6.values[i] /= chromanorm[2];
mail@81 784 // }
mail@81 785 // }
mail@81 786 //
mail@81 787 // }
mail@81 788 //
mail@81 789 // // local chord estimation
mail@81 790 // vector<float> currentChordSalience;
mail@81 791 // float tempchordvalue = 0;
mail@81 792 // float sumchordvalue = 0;
mail@81 793 //
mail@81 794 // for (int iChord = 0; iChord < nChord; iChord++) {
mail@81 795 // tempchordvalue = 0;
mail@81 796 // for (int iBin = 0; iBin < 12; iBin++) {
mail@81 797 // tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin];
mail@81 798 // }
mail@81 799 // for (int iBin = 12; iBin < 24; iBin++) {
mail@81 800 // tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin];
mail@81 801 // }
mail@81 802 // sumchordvalue+=tempchordvalue;
mail@81 803 // currentChordSalience.push_back(tempchordvalue);
mail@81 804 // }
mail@81 805 // if (sumchordvalue > 0) {
mail@81 806 // for (int iChord = 0; iChord < nChord; iChord++) {
mail@81 807 // currentChordSalience[iChord] /= sumchordvalue;
mail@81 808 // }
mail@81 809 // } else {
mail@81 810 // currentChordSalience[nChord-1] = 1.0;
mail@81 811 // }
mail@81 812 // chordogram.push_back(currentChordSalience);
mail@81 813 //
mail@81 814 // fsOut[3].push_back(f3);
mail@81 815 // fsOut[4].push_back(f4);
mail@81 816 // fsOut[5].push_back(f5);
mail@81 817 // fsOut[6].push_back(f6);
mail@81 818 // count++;
mail@81 819 // }
mail@81 820 // cerr << "done." << endl;
mail@81 821 //
mail@81 822 //
mail@81 823 // /* Simple chord estimation
mail@81 824 // I just take the local chord estimates ("currentChordSalience") and average them over time, then
mail@81 825 // take the maximum. Very simple, don't do this at home...
mail@81 826 // */
mail@81 827 // cerr << "[NNLS Chroma Plugin] Chord Estimation ... ";
mail@81 828 // count = 0;
mail@81 829 // int halfwindowlength = m_inputSampleRate / m_stepSize;
mail@81 830 // vector<int> chordSequence;
mail@81 831 // for (FeatureList::iterator it = fsOut[6].begin(); it != fsOut[6].end(); ++it) { // initialise the score chordogram
mail@81 832 // vector<int> temp = vector<int>(nChord,0);
mail@81 833 // scoreChordogram.push_back(temp);
mail@81 834 // }
mail@81 835 // for (FeatureList::iterator it = fsOut[6].begin(); it < fsOut[6].end()-2*halfwindowlength-1; ++it) {
mail@81 836 // int startIndex = count + 1;
mail@81 837 // int endIndex = count + 2 * halfwindowlength;
mail@81 838 //
mail@81 839 // float chordThreshold = 2.5/nChord;//*(2*halfwindowlength+1);
mail@81 840 //
mail@81 841 // vector<int> chordCandidates;
mail@81 842 // for (unsigned iChord = 0; iChord < nChord-1; iChord++) {
mail@81 843 // // float currsum = 0;
mail@81 844 // // for (unsigned iFrame = startIndex; iFrame < endIndex; ++iFrame) {
mail@81 845 // // currsum += chordogram[iFrame][iChord];
mail@81 846 // // }
mail@81 847 // // if (currsum > chordThreshold) chordCandidates.push_back(iChord);
mail@81 848 // for (unsigned iFrame = startIndex; iFrame < endIndex; ++iFrame) {
mail@81 849 // if (chordogram[iFrame][iChord] > chordThreshold) {
mail@81 850 // chordCandidates.push_back(iChord);
mail@81 851 // break;
mail@81 852 // }
mail@81 853 // }
mail@81 854 // }
mail@81 855 // chordCandidates.push_back(nChord-1);
mail@81 856 // // cerr << chordCandidates.size() << endl;
mail@81 857 //
mail@81 858 // float maxval = 0; // will be the value of the most salient *chord change* in this frame
mail@81 859 // float maxindex = 0; //... and the index thereof
mail@81 860 // unsigned bestchordL = nChord-1; // index of the best "left" chord
mail@81 861 // unsigned bestchordR = nChord-1; // index of the best "right" chord
mail@81 862 //
mail@81 863 // for (int iWF = 1; iWF < 2*halfwindowlength; ++iWF) {
mail@81 864 // // now find the max values on both sides of iWF
mail@81 865 // // left side:
mail@81 866 // float maxL = 0;
mail@81 867 // unsigned maxindL = nChord-1;
mail@81 868 // for (unsigned kChord = 0; kChord < chordCandidates.size(); kChord++) {
mail@81 869 // unsigned iChord = chordCandidates[kChord];
mail@81 870 // float currsum = 0;
mail@81 871 // for (unsigned iFrame = 0; iFrame < iWF-1; ++iFrame) {
mail@81 872 // currsum += chordogram[count+iFrame][iChord];
mail@81 873 // }
mail@81 874 // if (iChord == nChord-1) currsum *= 0.8;
mail@81 875 // if (currsum > maxL) {
mail@81 876 // maxL = currsum;
mail@81 877 // maxindL = iChord;
mail@81 878 // }
mail@81 879 // }
mail@81 880 // // right side:
mail@81 881 // float maxR = 0;
mail@81 882 // unsigned maxindR = nChord-1;
mail@81 883 // for (unsigned kChord = 0; kChord < chordCandidates.size(); kChord++) {
mail@81 884 // unsigned iChord = chordCandidates[kChord];
mail@81 885 // float currsum = 0;
mail@81 886 // for (unsigned iFrame = iWF-1; iFrame < 2*halfwindowlength; ++iFrame) {
mail@81 887 // currsum += chordogram[count+iFrame][iChord];
mail@81 888 // }
mail@81 889 // if (iChord == nChord-1) currsum *= 0.8;
mail@81 890 // if (currsum > maxR) {
mail@81 891 // maxR = currsum;
mail@81 892 // maxindR = iChord;
mail@81 893 // }
mail@81 894 // }
mail@81 895 // if (maxL+maxR > maxval) {
mail@81 896 // maxval = maxL+maxR;
mail@81 897 // maxindex = iWF;
mail@81 898 // bestchordL = maxindL;
mail@81 899 // bestchordR = maxindR;
mail@81 900 // }
mail@81 901 //
mail@81 902 // }
mail@81 903 // // cerr << "maxindex: " << maxindex << ", bestchordR is " << bestchordR << ", of frame " << count << endl;
mail@81 904 // // add a score to every chord-frame-point that was part of a maximum
mail@81 905 // for (unsigned iFrame = 0; iFrame < maxindex-1; ++iFrame) {
mail@81 906 // scoreChordogram[iFrame+count][bestchordL]++;
mail@81 907 // }
mail@81 908 // for (unsigned iFrame = maxindex-1; iFrame < 2*halfwindowlength; ++iFrame) {
mail@81 909 // scoreChordogram[iFrame+count][bestchordR]++;
mail@81 910 // }
mail@81 911 // if (bestchordL != bestchordR) chordchange[maxindex+count] += (halfwindowlength - abs(maxindex-halfwindowlength)) * 2.0 / halfwindowlength;
mail@81 912 // count++;
mail@81 913 // }
mail@81 914 // // cerr << "******* agent finished *******" << endl;
mail@81 915 // count = 0;
mail@81 916 // for (FeatureList::iterator it = fsOut[6].begin(); it != fsOut[6].end(); ++it) {
mail@81 917 // float maxval = 0; // will be the value of the most salient chord in this frame
mail@81 918 // float maxindex = 0; //... and the index thereof
mail@81 919 // for (unsigned iChord = 0; iChord < nChord; iChord++) {
mail@81 920 // if (scoreChordogram[count][iChord] > maxval) {
mail@81 921 // maxval = scoreChordogram[count][iChord];
mail@81 922 // maxindex = iChord;
mail@81 923 // // cerr << iChord << endl;
mail@81 924 // }
mail@81 925 // }
mail@81 926 // chordSequence.push_back(maxindex);
mail@81 927 // // cerr << "before modefilter, maxindex: " << maxindex << endl;
mail@81 928 // count++;
mail@81 929 // }
mail@81 930 // // cerr << "******* mode filter done *******" << endl;
mail@81 931 //
mail@81 932 //
mail@81 933 // // mode filter on chordSequence
mail@81 934 // count = 0;
mail@81 935 // string oldChord = "";
mail@81 936 // for (FeatureList::iterator it = fsOut[6].begin(); it != fsOut[6].end(); ++it) {
mail@81 937 // Feature f6 = *it;
mail@81 938 // Feature f7; // chord estimate
mail@81 939 // f7.hasTimestamp = true;
mail@81 940 // f7.timestamp = f6.timestamp;
mail@81 941 // Feature f8; // chord estimate
mail@81 942 // f8.hasTimestamp = true;
mail@81 943 // f8.timestamp = f6.timestamp;
mail@81 944 //
mail@81 945 // vector<int> chordCount = vector<int>(nChord,0);
mail@81 946 // int maxChordCount = 0;
mail@81 947 // int maxChordIndex = nChord-1;
mail@81 948 // string maxChord;
mail@81 949 // int startIndex = max(count - halfwindowlength/2,0);
mail@81 950 // int endIndex = min(int(chordogram.size()), count + halfwindowlength/2);
mail@81 951 // for (int i = startIndex; i < endIndex; i++) {
mail@81 952 // chordCount[chordSequence[i]]++;
mail@81 953 // if (chordCount[chordSequence[i]] > maxChordCount) {
mail@81 954 // // cerr << "start index " << startIndex << endl;
mail@81 955 // maxChordCount++;
mail@81 956 // maxChordIndex = chordSequence[i];
mail@81 957 // maxChord = m_chordnames[maxChordIndex];
mail@81 958 // }
mail@81 959 // }
mail@81 960 // // chordSequence[count] = maxChordIndex;
mail@81 961 // // cerr << maxChordIndex << endl;
mail@81 962 // f8.values.push_back(chordchange[count]/(halfwindowlength*2));
mail@81 963 // // cerr << chordchange[count] << endl;
mail@81 964 // fsOut[9].push_back(f8);
mail@81 965 // if (oldChord != maxChord) {
mail@81 966 // oldChord = maxChord;
mail@81 967 //
mail@81 968 // // char buffer1 [50];
mail@81 969 // // if (maxChordIndex < nChord - 1) {
mail@81 970 // // sprintf(buffer1, "%s%s", notenames[maxChordIndex % 12 + 12], chordtypes[maxChordIndex]);
mail@81 971 // // } else {
mail@81 972 // // sprintf(buffer1, "N");
mail@81 973 // // }
mail@81 974 // // f7.label = buffer1;
mail@81 975 // f7.label = m_chordnames[maxChordIndex];
mail@81 976 // fsOut[7].push_back(f7);
mail@81 977 // }
mail@81 978 // count++;
mail@81 979 // }
mail@81 980 // Feature f7; // last chord estimate
mail@81 981 // f7.hasTimestamp = true;
mail@81 982 // f7.timestamp = fsOut[6][fsOut[6].size()-1].timestamp;
mail@81 983 // f7.label = "N";
mail@81 984 // fsOut[7].push_back(f7);
mail@81 985 // cerr << "done." << endl;
mail@81 986 // // // musicity
mail@81 987 // // count = 0;
mail@81 988 // // int oldlabeltype = 0; // start value is 0, music is 1, speech is 2
mail@81 989 // // vector<float> musicityValue;
mail@81 990 // // for (FeatureList::iterator it = fsOut[4].begin(); it != fsOut[4].end(); ++it) {
mail@81 991 // // Feature f4 = *it;
mail@81 992 // //
mail@81 993 // // int startIndex = max(count - musicitykernelwidth/2,0);
mail@81 994 // // int endIndex = min(int(chordogram.size()), startIndex + musicitykernelwidth - 1);
mail@81 995 // // float chromasum = 0;
mail@81 996 // // float diffsum = 0;
mail@81 997 // // for (int k = 0; k < 12; k++) {
mail@81 998 // // for (int i = startIndex + 1; i < endIndex; i++) {
mail@81 999 // // chromasum += pow(fsOut[4][i].values[k],2);
mail@81 1000 // // diffsum += abs(fsOut[4][i-1].values[k] - fsOut[4][i].values[k]);
mail@81 1001 // // }
mail@81 1002 // // }
mail@81 1003 // // diffsum /= chromasum;
mail@81 1004 // // musicityValue.push_back(diffsum);
mail@81 1005 // // count++;
mail@81 1006 // // }
mail@81 1007 // //
mail@81 1008 // // float musicityThreshold = 0.44;
mail@81 1009 // // if (m_stepSize == 4096) {
mail@81 1010 // // musicityThreshold = 0.74;
mail@81 1011 // // }
mail@81 1012 // // if (m_stepSize == 4410) {
mail@81 1013 // // musicityThreshold = 0.77;
mail@81 1014 // // }
mail@81 1015 // //
mail@81 1016 // // count = 0;
mail@81 1017 // // for (FeatureList::iterator it = fsOut[4].begin(); it != fsOut[4].end(); ++it) {
mail@81 1018 // // Feature f4 = *it;
mail@81 1019 // // Feature f8; // musicity
mail@81 1020 // // Feature f9; // musicity segmenter
mail@81 1021 // //
mail@81 1022 // // f8.hasTimestamp = true;
mail@81 1023 // // f8.timestamp = f4.timestamp;
mail@81 1024 // // f9.hasTimestamp = true;
mail@81 1025 // // f9.timestamp = f4.timestamp;
mail@81 1026 // //
mail@81 1027 // // int startIndex = max(count - musicitykernelwidth/2,0);
mail@81 1028 // // int endIndex = min(int(chordogram.size()), startIndex + musicitykernelwidth - 1);
mail@81 1029 // // int musicityCount = 0;
mail@81 1030 // // for (int i = startIndex; i <= endIndex; i++) {
mail@81 1031 // // if (musicityValue[i] > musicityThreshold) musicityCount++;
mail@81 1032 // // }
mail@81 1033 // // bool isSpeech = (2 * musicityCount > endIndex - startIndex + 1);
mail@81 1034 // //
mail@81 1035 // // if (isSpeech) {
mail@81 1036 // // if (oldlabeltype != 2) {
mail@81 1037 // // f9.label = "Speech";
mail@81 1038 // // fsOut[9].push_back(f9);
mail@81 1039 // // oldlabeltype = 2;
mail@81 1040 // // }
mail@81 1041 // // } else {
mail@81 1042 // // if (oldlabeltype != 1) {
mail@81 1043 // // f9.label = "Music";
mail@81 1044 // // fsOut[9].push_back(f9);
mail@81 1045 // // oldlabeltype = 1;
mail@81 1046 // // }
mail@81 1047 // // }
mail@81 1048 // // f8.values.push_back(musicityValue[count]);
mail@81 1049 // // fsOut[8].push_back(f8);
mail@81 1050 // // count++;
mail@81 1051 // // }
Chris@23 1052 return fsOut;
matthiasm@0 1053
matthiasm@0 1054 }
matthiasm@0 1055
Chris@35 1056 #endif