annotate Chordino.cpp @ 53:bc161fd73858 matthiasm-plugin

made HMM toggle parameter more easily understandable
author matthiasm
date Mon, 25 Oct 2010 19:39:32 +0900
parents b6cddb109482
children 01bc078f5f61
rev   line source
Chris@23 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
matthiasm@0 2
Chris@35 3 /*
Chris@35 4 NNLS-Chroma / Chordino
Chris@35 5
Chris@35 6 Audio feature extraction plugins for chromagram and chord
Chris@35 7 estimation.
Chris@35 8
Chris@35 9 Centre for Digital Music, Queen Mary University of London.
Chris@35 10 This file copyright 2008-2010 Matthias Mauch and QMUL.
Chris@35 11
Chris@35 12 This program is free software; you can redistribute it and/or
Chris@35 13 modify it under the terms of the GNU General Public License as
Chris@35 14 published by the Free Software Foundation; either version 2 of the
Chris@35 15 License, or (at your option) any later version. See the file
Chris@35 16 COPYING included with this distribution for more information.
Chris@35 17 */
Chris@35 18
Chris@35 19 #include "Chordino.h"
Chris@27 20
Chris@27 21 #include "chromamethods.h"
matthiasm@43 22 #include "viterbi.h"
Chris@27 23
Chris@27 24 #include <cstdlib>
Chris@27 25 #include <fstream>
matthiasm@0 26 #include <cmath>
matthiasm@9 27
Chris@27 28 #include <algorithm>
matthiasm@0 29
matthiasm@0 30 const bool debug_on = false;
matthiasm@0 31
Chris@27 32 const vector<float> hw(hammingwind, hammingwind+19);
matthiasm@0 33
Chris@35 34 Chordino::Chordino(float inputSampleRate) :
Chris@35 35 NNLSBase(inputSampleRate)
matthiasm@0 36 {
Chris@35 37 if (debug_on) cerr << "--> Chordino" << endl;
matthiasm@0 38 }
matthiasm@0 39
Chris@35 40 Chordino::~Chordino()
matthiasm@0 41 {
Chris@35 42 if (debug_on) cerr << "--> ~Chordino" << endl;
matthiasm@0 43 }
matthiasm@0 44
matthiasm@0 45 string
Chris@35 46 Chordino::getIdentifier() const
matthiasm@0 47 {
Chris@23 48 if (debug_on) cerr << "--> getIdentifier" << endl;
Chris@35 49 return "chordino";
matthiasm@0 50 }
matthiasm@0 51
matthiasm@0 52 string
Chris@35 53 Chordino::getName() const
matthiasm@0 54 {
Chris@23 55 if (debug_on) cerr << "--> getName" << endl;
Chris@35 56 return "Chordino";
matthiasm@0 57 }
matthiasm@0 58
matthiasm@0 59 string
Chris@35 60 Chordino::getDescription() const
matthiasm@0 61 {
Chris@23 62 if (debug_on) cerr << "--> getDescription" << endl;
matthiasm@13 63 return "This plugin provides a number of features derived from a log-frequency amplitude spectrum of the DFT: some variants of the log-frequency spectrum, including a semitone spectrum derived from approximate transcription using the NNLS algorithm; based on this semitone spectrum, chroma features and a simple chord estimate.";
matthiasm@0 64 }
matthiasm@0 65
matthiasm@50 66 Chordino::ParameterList
matthiasm@50 67 Chordino::getParameterDescriptors() const
matthiasm@50 68 {
matthiasm@50 69 if (debug_on) cerr << "--> getParameterDescriptors" << endl;
matthiasm@50 70 ParameterList list;
matthiasm@50 71
matthiasm@50 72 ParameterDescriptor d;
matthiasm@50 73 d.identifier = "useNNLS";
matthiasm@50 74 d.name = "use approximate transcription (NNLS)";
matthiasm@50 75 d.description = "Toggles approximate transcription (NNLS).";
matthiasm@50 76 d.unit = "";
matthiasm@50 77 d.minValue = 0.0;
matthiasm@50 78 d.maxValue = 1.0;
matthiasm@50 79 d.defaultValue = 1.0;
matthiasm@50 80 d.isQuantized = true;
matthiasm@50 81 d.quantizeStep = 1.0;
matthiasm@50 82 list.push_back(d);
matthiasm@50 83
matthiasm@50 84 ParameterDescriptor d4;
matthiasm@50 85 d4.identifier = "useHMM";
matthiasm@53 86 d4.name = "HMM (Viterbi decoding)";
matthiasm@50 87 d4.description = "Turns on Viterbi decoding (when off, the simple chord estimator is used).";
matthiasm@50 88 d4.unit = "";
matthiasm@50 89 d4.minValue = 0.0;
matthiasm@50 90 d4.maxValue = 1.0;
matthiasm@50 91 d4.defaultValue = 1.0;
matthiasm@50 92 d4.isQuantized = true;
matthiasm@50 93 d4.quantizeStep = 1.0;
matthiasm@50 94 list.push_back(d4);
matthiasm@50 95
matthiasm@50 96 ParameterDescriptor d0;
matthiasm@50 97 d0.identifier = "rollon";
matthiasm@50 98 d0.name = "spectral roll-on";
matthiasm@50 99 d0.description = "The bins below the spectral roll-on quantile will be set to 0.";
matthiasm@50 100 d0.unit = "";
matthiasm@50 101 d0.minValue = 0;
matthiasm@50 102 d0.maxValue = 0.05;
matthiasm@50 103 d0.defaultValue = 0;
matthiasm@50 104 d0.isQuantized = true;
matthiasm@50 105 d0.quantizeStep = 0.005;
matthiasm@50 106 list.push_back(d0);
matthiasm@50 107
matthiasm@50 108 ParameterDescriptor d1;
matthiasm@50 109 d1.identifier = "tuningmode";
matthiasm@50 110 d1.name = "tuning mode";
matthiasm@50 111 d1.description = "Tuning can be performed locally or on the whole extraction segment. Local tuning is only advisable when the tuning is likely to change over the audio, for example in podcasts, or in a cappella singing.";
matthiasm@50 112 d1.unit = "";
matthiasm@50 113 d1.minValue = 0;
matthiasm@50 114 d1.maxValue = 1;
matthiasm@50 115 d1.defaultValue = 0;
matthiasm@50 116 d1.isQuantized = true;
matthiasm@50 117 d1.valueNames.push_back("global tuning");
matthiasm@50 118 d1.valueNames.push_back("local tuning");
matthiasm@50 119 d1.quantizeStep = 1.0;
matthiasm@50 120 list.push_back(d1);
matthiasm@50 121
matthiasm@50 122 ParameterDescriptor d2;
matthiasm@50 123 d2.identifier = "whitening";
matthiasm@50 124 d2.name = "spectral whitening";
matthiasm@50 125 d2.description = "Spectral whitening: no whitening - 0; whitening - 1.";
matthiasm@50 126 d2.unit = "";
matthiasm@50 127 d2.isQuantized = true;
matthiasm@50 128 d2.minValue = 0.0;
matthiasm@50 129 d2.maxValue = 1.0;
matthiasm@50 130 d2.defaultValue = 1.0;
matthiasm@50 131 d2.isQuantized = false;
matthiasm@50 132 list.push_back(d2);
matthiasm@50 133
matthiasm@50 134 ParameterDescriptor d3;
matthiasm@50 135 d3.identifier = "s";
matthiasm@50 136 d3.name = "spectral shape";
matthiasm@50 137 d3.description = "Determines how individual notes in the note dictionary look: higher values mean more dominant higher harmonics.";
matthiasm@50 138 d3.unit = "";
matthiasm@50 139 d3.minValue = 0.5;
matthiasm@50 140 d3.maxValue = 0.9;
matthiasm@50 141 d3.defaultValue = 0.7;
matthiasm@50 142 d3.isQuantized = false;
matthiasm@50 143 list.push_back(d3);
matthiasm@50 144
matthiasm@50 145 // ParameterDescriptor d4;
matthiasm@50 146 // d4.identifier = "chromanormalize";
matthiasm@50 147 // d4.name = "chroma normalization";
matthiasm@50 148 // d4.description = "How shall the chroma vector be normalized?";
matthiasm@50 149 // d4.unit = "";
matthiasm@50 150 // d4.minValue = 0;
matthiasm@50 151 // d4.maxValue = 3;
matthiasm@50 152 // d4.defaultValue = 0;
matthiasm@50 153 // d4.isQuantized = true;
matthiasm@50 154 // d4.valueNames.push_back("none");
matthiasm@50 155 // d4.valueNames.push_back("maximum norm");
matthiasm@50 156 // d4.valueNames.push_back("L1 norm");
matthiasm@50 157 // d4.valueNames.push_back("L2 norm");
matthiasm@50 158 // d4.quantizeStep = 1.0;
matthiasm@50 159 // list.push_back(d4);
matthiasm@50 160
matthiasm@50 161 return list;
matthiasm@50 162 }
matthiasm@50 163
Chris@35 164 Chordino::OutputList
Chris@35 165 Chordino::getOutputDescriptors() const
matthiasm@0 166 {
Chris@23 167 if (debug_on) cerr << "--> getOutputDescriptors" << endl;
matthiasm@0 168 OutputList list;
matthiasm@0 169
Chris@35 170 int index = 0;
matthiasm@0 171
matthiasm@0 172 OutputDescriptor d7;
matthiasm@0 173 d7.identifier = "simplechord";
Chris@36 174 d7.name = "Chord Estimate";
matthiasm@0 175 d7.description = "A simple chord estimate based on the inner product of chord templates with the smoothed chroma.";
matthiasm@0 176 d7.unit = "";
matthiasm@0 177 d7.hasFixedBinCount = true;
matthiasm@0 178 d7.binCount = 0;
matthiasm@0 179 d7.hasKnownExtents = false;
matthiasm@0 180 d7.isQuantized = false;
matthiasm@0 181 d7.sampleType = OutputDescriptor::VariableSampleRate;
matthiasm@0 182 d7.hasDuration = false;
matthiasm@0 183 d7.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 184 list.push_back(d7);
Chris@35 185 m_outputChords = index++;
matthiasm@0 186
Chris@23 187 OutputDescriptor d8;
matthiasm@17 188 d8.identifier = "harmonicchange";
Chris@36 189 d8.name = "Harmonic Change Value";
matthiasm@17 190 d8.description = "Harmonic change.";
matthiasm@17 191 d8.unit = "";
matthiasm@17 192 d8.hasFixedBinCount = true;
matthiasm@17 193 d8.binCount = 1;
matthiasm@17 194 d8.hasKnownExtents = true;
Chris@23 195 d8.minValue = 0.0;
Chris@23 196 d8.maxValue = 0.999;
matthiasm@17 197 d8.isQuantized = false;
matthiasm@17 198 d8.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@17 199 d8.hasDuration = false;
matthiasm@17 200 // d8.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@17 201 list.push_back(d8);
Chris@35 202 m_outputHarmonicChange = index++;
matthiasm@1 203
matthiasm@0 204 return list;
matthiasm@0 205 }
matthiasm@0 206
matthiasm@0 207 bool
Chris@35 208 Chordino::initialise(size_t channels, size_t stepSize, size_t blockSize)
matthiasm@0 209 {
Chris@23 210 if (debug_on) {
Chris@23 211 cerr << "--> initialise";
Chris@23 212 }
matthiasm@1 213
Chris@35 214 if (!NNLSBase::initialise(channels, stepSize, blockSize)) {
Chris@35 215 return false;
Chris@35 216 }
matthiasm@1 217
matthiasm@0 218 return true;
matthiasm@0 219 }
matthiasm@0 220
matthiasm@0 221 void
Chris@35 222 Chordino::reset()
matthiasm@0 223 {
Chris@23 224 if (debug_on) cerr << "--> reset";
Chris@35 225 NNLSBase::reset();
matthiasm@0 226 }
matthiasm@0 227
Chris@35 228 Chordino::FeatureSet
Chris@35 229 Chordino::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
matthiasm@0 230 {
Chris@23 231 if (debug_on) cerr << "--> process" << endl;
matthiasm@0 232
Chris@35 233 NNLSBase::baseProcess(inputBuffers, timestamp);
matthiasm@0 234
Chris@35 235 return FeatureSet();
matthiasm@0 236 }
matthiasm@0 237
Chris@35 238 Chordino::FeatureSet
Chris@35 239 Chordino::getRemainingFeatures()
matthiasm@0 240 {
Chris@23 241 if (debug_on) cerr << "--> getRemainingFeatures" << endl;
Chris@23 242 FeatureSet fsOut;
Chris@35 243 if (m_logSpectrum.size() == 0) return fsOut;
Chris@23 244 int nChord = m_chordnames.size();
Chris@23 245 //
Chris@23 246 /** Calculate Tuning
Chris@23 247 calculate tuning from (using the angle of the complex number defined by the
Chris@23 248 cumulative mean real and imag values)
Chris@23 249 **/
Chris@23 250 float meanTuningImag = sinvalue * m_meanTuning1 - sinvalue * m_meanTuning2;
Chris@23 251 float meanTuningReal = m_meanTuning0 + cosvalue * m_meanTuning1 + cosvalue * m_meanTuning2;
Chris@23 252 float cumulativetuning = 440 * pow(2,atan2(meanTuningImag, meanTuningReal)/(24*M_PI));
Chris@23 253 float normalisedtuning = atan2(meanTuningImag, meanTuningReal)/(2*M_PI);
Chris@23 254 int intShift = floor(normalisedtuning * 3);
Chris@23 255 float intFactor = normalisedtuning * 3 - intShift; // intFactor is a really bad name for this
matthiasm@1 256
Chris@23 257 char buffer0 [50];
matthiasm@1 258
Chris@23 259 sprintf(buffer0, "estimated tuning: %0.1f Hz", cumulativetuning);
matthiasm@1 260
matthiasm@1 261
Chris@23 262 /** Tune Log-Frequency Spectrogram
matthiasm@43 263 calculate a tuned log-frequency spectrogram (currentTunedSpec): use the tuning estimated above (kinda f0) to
matthiasm@43 264 perform linear interpolation on the existing log-frequency spectrogram (kinda currentLogSpectum).
Chris@23 265 **/
Chris@35 266 cerr << endl << "[Chordino Plugin] Tuning Log-Frequency Spectrogram ... ";
matthiasm@13 267
Chris@23 268 float tempValue = 0;
Chris@23 269 float dbThreshold = 0; // relative to the background spectrum
Chris@23 270 float thresh = pow(10,dbThreshold/20);
Chris@23 271 // cerr << "tune local ? " << m_tuneLocal << endl;
Chris@23 272 int count = 0;
matthiasm@1 273
Chris@35 274 FeatureList tunedSpec;
matthiasm@43 275 int nFrame = m_logSpectrum.size();
matthiasm@43 276
matthiasm@43 277 vector<Vamp::RealTime> timestamps;
Chris@35 278
Chris@35 279 for (FeatureList::iterator i = m_logSpectrum.begin(); i != m_logSpectrum.end(); ++i) {
matthiasm@43 280 Feature currentLogSpectum = *i;
matthiasm@43 281 Feature currentTunedSpec; // tuned log-frequency spectrum
matthiasm@43 282 currentTunedSpec.hasTimestamp = true;
matthiasm@43 283 currentTunedSpec.timestamp = currentLogSpectum.timestamp;
matthiasm@43 284 timestamps.push_back(currentLogSpectum.timestamp);
matthiasm@43 285 currentTunedSpec.values.push_back(0.0); currentTunedSpec.values.push_back(0.0); // set lower edge to zero
matthiasm@1 286
Chris@23 287 if (m_tuneLocal) {
Chris@23 288 intShift = floor(m_localTuning[count] * 3);
Chris@23 289 intFactor = m_localTuning[count] * 3 - intShift; // intFactor is a really bad name for this
Chris@23 290 }
matthiasm@1 291
Chris@23 292 // cerr << intShift << " " << intFactor << endl;
matthiasm@1 293
matthiasm@43 294 for (unsigned k = 2; k < currentLogSpectum.values.size() - 3; ++k) { // interpolate all inner bins
matthiasm@43 295 tempValue = currentLogSpectum.values[k + intShift] * (1-intFactor) + currentLogSpectum.values[k+intShift+1] * intFactor;
matthiasm@43 296 currentTunedSpec.values.push_back(tempValue);
Chris@23 297 }
matthiasm@1 298
matthiasm@43 299 currentTunedSpec.values.push_back(0.0); currentTunedSpec.values.push_back(0.0); currentTunedSpec.values.push_back(0.0); // upper edge
matthiasm@43 300 vector<float> runningmean = SpecialConvolution(currentTunedSpec.values,hw);
Chris@23 301 vector<float> runningstd;
Chris@23 302 for (int i = 0; i < 256; i++) { // first step: squared values into vector (variance)
matthiasm@43 303 runningstd.push_back((currentTunedSpec.values[i] - runningmean[i]) * (currentTunedSpec.values[i] - runningmean[i]));
Chris@23 304 }
Chris@23 305 runningstd = SpecialConvolution(runningstd,hw); // second step convolve
Chris@23 306 for (int i = 0; i < 256; i++) {
Chris@23 307 runningstd[i] = sqrt(runningstd[i]); // square root to finally have running std
Chris@23 308 if (runningstd[i] > 0) {
matthiasm@43 309 // currentTunedSpec.values[i] = (currentTunedSpec.values[i] / runningmean[i]) > thresh ?
matthiasm@43 310 // (currentTunedSpec.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0;
matthiasm@43 311 currentTunedSpec.values[i] = (currentTunedSpec.values[i] - runningmean[i]) > 0 ?
matthiasm@43 312 (currentTunedSpec.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0;
Chris@23 313 }
matthiasm@43 314 if (currentTunedSpec.values[i] < 0) {
Chris@23 315 cerr << "ERROR: negative value in logfreq spectrum" << endl;
Chris@23 316 }
Chris@23 317 }
matthiasm@43 318 tunedSpec.push_back(currentTunedSpec);
Chris@23 319 count++;
Chris@23 320 }
Chris@23 321 cerr << "done." << endl;
matthiasm@1 322
Chris@23 323 /** Semitone spectrum and chromagrams
Chris@23 324 Semitone-spaced log-frequency spectrum derived from the tuned log-freq spectrum above. the spectrum
Chris@23 325 is inferred using a non-negative least squares algorithm.
Chris@23 326 Three different kinds of chromagram are calculated, "treble", "bass", and "both" (which means
Chris@23 327 bass and treble stacked onto each other).
Chris@23 328 **/
matthiasm@42 329 if (m_useNNLS == 0) {
Chris@35 330 cerr << "[Chordino Plugin] Mapping to semitone spectrum and chroma ... ";
Chris@23 331 } else {
Chris@35 332 cerr << "[Chordino Plugin] Performing NNLS and mapping to chroma ... ";
Chris@23 333 }
matthiasm@13 334
matthiasm@1 335
matthiasm@43 336 vector<vector<double> > chordogram;
Chris@23 337 vector<vector<int> > scoreChordogram;
Chris@35 338 vector<float> chordchange = vector<float>(tunedSpec.size(),0);
Chris@23 339 count = 0;
matthiasm@9 340
Chris@35 341 FeatureList chromaList;
matthiasm@43 342
matthiasm@43 343
Chris@35 344
Chris@35 345 for (FeatureList::iterator it = tunedSpec.begin(); it != tunedSpec.end(); ++it) {
matthiasm@43 346 Feature currentTunedSpec = *it; // logfreq spectrum
matthiasm@43 347 Feature currentChromas; // treble and bass chromagram
Chris@35 348
matthiasm@43 349 currentChromas.hasTimestamp = true;
matthiasm@43 350 currentChromas.timestamp = currentTunedSpec.timestamp;
Chris@35 351
Chris@35 352 float b[256];
matthiasm@1 353
Chris@23 354 bool some_b_greater_zero = false;
Chris@23 355 float sumb = 0;
Chris@23 356 for (int i = 0; i < 256; i++) {
Chris@23 357 // b[i] = m_dict[(256 * count + i) % (256 * 84)];
matthiasm@43 358 b[i] = currentTunedSpec.values[i];
Chris@23 359 sumb += b[i];
Chris@23 360 if (b[i] > 0) {
Chris@23 361 some_b_greater_zero = true;
Chris@23 362 }
Chris@23 363 }
matthiasm@1 364
Chris@23 365 // here's where the non-negative least squares algorithm calculates the note activation x
matthiasm@1 366
Chris@23 367 vector<float> chroma = vector<float>(12, 0);
Chris@23 368 vector<float> basschroma = vector<float>(12, 0);
Chris@23 369 float currval;
Chris@23 370 unsigned iSemitone = 0;
matthiasm@1 371
Chris@23 372 if (some_b_greater_zero) {
matthiasm@42 373 if (m_useNNLS == 0) {
Chris@23 374 for (unsigned iNote = 2; iNote < nNote - 2; iNote += 3) {
Chris@23 375 currval = 0;
Chris@35 376 currval += b[iNote + 1 + -1] * 0.5;
Chris@35 377 currval += b[iNote + 1 + 0] * 1.0;
Chris@35 378 currval += b[iNote + 1 + 1] * 0.5;
Chris@23 379 chroma[iSemitone % 12] += currval * treblewindow[iSemitone];
Chris@23 380 basschroma[iSemitone % 12] += currval * basswindow[iSemitone];
Chris@23 381 iSemitone++;
Chris@23 382 }
matthiasm@1 383
Chris@23 384 } else {
Chris@35 385 float x[84+1000];
Chris@23 386 for (int i = 1; i < 1084; ++i) x[i] = 1.0;
Chris@23 387 vector<int> signifIndex;
Chris@23 388 int index=0;
Chris@23 389 sumb /= 84.0;
Chris@23 390 for (unsigned iNote = 2; iNote < nNote - 2; iNote += 3) {
Chris@23 391 float currval = 0;
Chris@23 392 currval += b[iNote + 1 + -1];
Chris@23 393 currval += b[iNote + 1 + 0];
Chris@23 394 currval += b[iNote + 1 + 1];
Chris@23 395 if (currval > 0) signifIndex.push_back(index);
Chris@23 396 index++;
Chris@23 397 }
Chris@35 398 float rnorm;
Chris@35 399 float w[84+1000];
Chris@35 400 float zz[84+1000];
Chris@23 401 int indx[84+1000];
Chris@23 402 int mode;
Chris@23 403 int dictsize = 256*signifIndex.size();
Chris@35 404 float *curr_dict = new float[dictsize];
Chris@23 405 for (unsigned iNote = 0; iNote < signifIndex.size(); ++iNote) {
Chris@23 406 for (unsigned iBin = 0; iBin < 256; iBin++) {
Chris@23 407 curr_dict[iNote * 256 + iBin] = 1.0 * m_dict[signifIndex[iNote] * 256 + iBin];
Chris@23 408 }
Chris@23 409 }
Chris@35 410 nnls(curr_dict, nNote, nNote, signifIndex.size(), b, x, &rnorm, w, zz, indx, &mode);
Chris@23 411 delete [] curr_dict;
Chris@23 412 for (unsigned iNote = 0; iNote < signifIndex.size(); ++iNote) {
Chris@23 413 // cerr << mode << endl;
Chris@23 414 chroma[signifIndex[iNote] % 12] += x[iNote] * treblewindow[signifIndex[iNote]];
Chris@23 415 basschroma[signifIndex[iNote] % 12] += x[iNote] * basswindow[signifIndex[iNote]];
Chris@23 416 }
Chris@23 417 }
Chris@23 418 }
Chris@35 419
Chris@35 420 vector<float> origchroma = chroma;
Chris@23 421 chroma.insert(chroma.begin(), basschroma.begin(), basschroma.end()); // just stack the both chromas
matthiasm@43 422 currentChromas.values = chroma;
Chris@35 423
Chris@23 424 if (m_doNormalizeChroma > 0) {
Chris@23 425 vector<float> chromanorm = vector<float>(3,0);
Chris@23 426 switch (int(m_doNormalizeChroma)) {
Chris@23 427 case 0: // should never end up here
Chris@23 428 break;
Chris@23 429 case 1:
Chris@35 430 chromanorm[0] = *max_element(origchroma.begin(), origchroma.end());
Chris@35 431 chromanorm[1] = *max_element(basschroma.begin(), basschroma.end());
Chris@23 432 chromanorm[2] = max(chromanorm[0], chromanorm[1]);
Chris@23 433 break;
Chris@23 434 case 2:
Chris@35 435 for (vector<float>::iterator it = chroma.begin(); it != chroma.end(); ++it) {
Chris@23 436 chromanorm[2] += *it;
Chris@23 437 }
Chris@23 438 break;
Chris@23 439 case 3:
Chris@35 440 for (vector<float>::iterator it = chroma.begin(); it != chroma.end(); ++it) {
Chris@23 441 chromanorm[2] += pow(*it,2);
Chris@23 442 }
Chris@23 443 chromanorm[2] = sqrt(chromanorm[2]);
Chris@23 444 break;
Chris@23 445 }
Chris@23 446 if (chromanorm[2] > 0) {
Chris@35 447 for (int i = 0; i < chroma.size(); i++) {
matthiasm@43 448 currentChromas.values[i] /= chromanorm[2];
Chris@23 449 }
Chris@23 450 }
Chris@23 451 }
Chris@35 452
matthiasm@43 453 chromaList.push_back(currentChromas);
Chris@35 454
Chris@23 455 // local chord estimation
matthiasm@43 456 vector<double> currentChordSalience;
matthiasm@43 457 double tempchordvalue = 0;
matthiasm@43 458 double sumchordvalue = 0;
matthiasm@9 459
Chris@23 460 for (int iChord = 0; iChord < nChord; iChord++) {
Chris@23 461 tempchordvalue = 0;
Chris@23 462 for (int iBin = 0; iBin < 12; iBin++) {
matthiasm@44 463 tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin];
Chris@23 464 }
Chris@23 465 for (int iBin = 12; iBin < 24; iBin++) {
Chris@23 466 tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin];
Chris@23 467 }
matthiasm@48 468 if (iChord == nChord-1) tempchordvalue *= .7;
matthiasm@48 469 if (tempchordvalue < 0) tempchordvalue = 0.0;
matthiasm@50 470 tempchordvalue = pow(1.3,tempchordvalue);
Chris@23 471 sumchordvalue+=tempchordvalue;
Chris@23 472 currentChordSalience.push_back(tempchordvalue);
Chris@23 473 }
Chris@23 474 if (sumchordvalue > 0) {
Chris@23 475 for (int iChord = 0; iChord < nChord; iChord++) {
Chris@23 476 currentChordSalience[iChord] /= sumchordvalue;
Chris@23 477 }
Chris@23 478 } else {
Chris@23 479 currentChordSalience[nChord-1] = 1.0;
Chris@23 480 }
Chris@23 481 chordogram.push_back(currentChordSalience);
matthiasm@1 482
Chris@23 483 count++;
Chris@23 484 }
Chris@23 485 cerr << "done." << endl;
matthiasm@13 486
matthiasm@10 487
matthiasm@50 488 // bool m_useHMM = true; // this will go into the chordino header file.
matthiasm@50 489 if (m_useHMM == 1.0) {
matthiasm@44 490 cerr << "[Chordino Plugin] HMM Chord Estimation ... ";
matthiasm@43 491 int oldchord = nChord-1;
matthiasm@48 492 double selftransprob = 0.99;
matthiasm@43 493
matthiasm@48 494 // vector<double> init = vector<double>(nChord,1.0/nChord);
matthiasm@48 495 vector<double> init = vector<double>(nChord,0); init[nChord-1] = 1;
matthiasm@48 496
matthiasm@50 497 double *delta;
matthiasm@50 498 delta = (double *)malloc(sizeof(double)*nFrame*nChord);
matthiasm@50 499
matthiasm@43 500 vector<vector<double> > trans;
matthiasm@43 501 for (int iChord = 0; iChord < nChord; iChord++) {
matthiasm@43 502 vector<double> temp = vector<double>(nChord,(1-selftransprob)/(nChord-1));
matthiasm@43 503 temp[iChord] = selftransprob;
matthiasm@43 504 trans.push_back(temp);
matthiasm@43 505 }
matthiasm@50 506 vector<int> chordpath = ViterbiPath(init, trans, chordogram, delta);
matthiasm@48 507
matthiasm@48 508
matthiasm@48 509 Feature chord_feature; // chord estimate
matthiasm@48 510 chord_feature.hasTimestamp = true;
matthiasm@48 511 chord_feature.timestamp = timestamps[0];
matthiasm@48 512 chord_feature.label = m_chordnames[chordpath[0]];
matthiasm@48 513 fsOut[0].push_back(chord_feature);
matthiasm@43 514
matthiasm@50 515 for (int iFrame = 1; iFrame < chordpath.size(); ++iFrame) {
matthiasm@43 516 // cerr << chordpath[iFrame] << endl;
matthiasm@48 517 if (chordpath[iFrame] != oldchord ) {
matthiasm@43 518 Feature chord_feature; // chord estimate
matthiasm@43 519 chord_feature.hasTimestamp = true;
matthiasm@43 520 chord_feature.timestamp = timestamps[iFrame];
matthiasm@43 521 chord_feature.label = m_chordnames[chordpath[iFrame]];
matthiasm@43 522 fsOut[0].push_back(chord_feature);
matthiasm@43 523 oldchord = chordpath[iFrame];
Chris@23 524 }
matthiasm@50 525 /* calculating simple chord change prob */
matthiasm@50 526 for (int iChord = 0; iChord < nChord; iChord++) {
matthiasm@50 527 chordchange[iFrame-1] += delta[(iFrame-1)*nChord + iChord] * log(delta[(iFrame-1)*nChord + iChord]/delta[iFrame*nChord + iChord]);
matthiasm@50 528 }
Chris@23 529 }
matthiasm@43 530
matthiasm@43 531 // cerr << chordpath[0] << endl;
matthiasm@43 532 } else {
matthiasm@43 533 /* Simple chord estimation
matthiasm@43 534 I just take the local chord estimates ("currentChordSalience") and average them over time, then
matthiasm@43 535 take the maximum. Very simple, don't do this at home...
matthiasm@43 536 */
matthiasm@44 537 cerr << "[Chordino Plugin] Simple Chord Estimation ... ";
matthiasm@43 538 count = 0;
matthiasm@43 539 int halfwindowlength = m_inputSampleRate / m_stepSize;
matthiasm@43 540 vector<int> chordSequence;
matthiasm@43 541 for (vector<Vamp::RealTime>::iterator it = timestamps.begin(); it != timestamps.end(); ++it) { // initialise the score chordogram
matthiasm@43 542 vector<int> temp = vector<int>(nChord,0);
matthiasm@43 543 scoreChordogram.push_back(temp);
matthiasm@43 544 }
matthiasm@43 545 for (vector<Vamp::RealTime>::iterator it = timestamps.begin(); it < timestamps.end()-2*halfwindowlength-1; ++it) {
matthiasm@43 546 int startIndex = count + 1;
matthiasm@43 547 int endIndex = count + 2 * halfwindowlength;
matthiasm@43 548
matthiasm@43 549 float chordThreshold = 2.5/nChord;//*(2*halfwindowlength+1);
matthiasm@43 550
matthiasm@43 551 vector<int> chordCandidates;
matthiasm@43 552 for (unsigned iChord = 0; iChord < nChord-1; iChord++) {
matthiasm@43 553 // float currsum = 0;
matthiasm@43 554 // for (unsigned iFrame = startIndex; iFrame < endIndex; ++iFrame) {
matthiasm@43 555 // currsum += chordogram[iFrame][iChord];
matthiasm@43 556 // }
matthiasm@43 557 // if (currsum > chordThreshold) chordCandidates.push_back(iChord);
matthiasm@43 558 for (unsigned iFrame = startIndex; iFrame < endIndex; ++iFrame) {
matthiasm@43 559 if (chordogram[iFrame][iChord] > chordThreshold) {
matthiasm@43 560 chordCandidates.push_back(iChord);
matthiasm@43 561 break;
matthiasm@43 562 }
Chris@23 563 }
Chris@23 564 }
matthiasm@43 565 chordCandidates.push_back(nChord-1);
matthiasm@43 566 // cerr << chordCandidates.size() << endl;
matthiasm@43 567
matthiasm@43 568 float maxval = 0; // will be the value of the most salient *chord change* in this frame
matthiasm@43 569 float maxindex = 0; //... and the index thereof
matthiasm@43 570 unsigned bestchordL = nChord-1; // index of the best "left" chord
matthiasm@43 571 unsigned bestchordR = nChord-1; // index of the best "right" chord
matthiasm@43 572
matthiasm@43 573 for (int iWF = 1; iWF < 2*halfwindowlength; ++iWF) {
matthiasm@43 574 // now find the max values on both sides of iWF
matthiasm@43 575 // left side:
matthiasm@43 576 float maxL = 0;
matthiasm@43 577 unsigned maxindL = nChord-1;
matthiasm@43 578 for (unsigned kChord = 0; kChord < chordCandidates.size(); kChord++) {
matthiasm@43 579 unsigned iChord = chordCandidates[kChord];
matthiasm@43 580 float currsum = 0;
matthiasm@43 581 for (unsigned iFrame = 0; iFrame < iWF-1; ++iFrame) {
matthiasm@43 582 currsum += chordogram[count+iFrame][iChord];
matthiasm@43 583 }
matthiasm@43 584 if (iChord == nChord-1) currsum *= 0.8;
matthiasm@43 585 if (currsum > maxL) {
matthiasm@43 586 maxL = currsum;
matthiasm@43 587 maxindL = iChord;
matthiasm@43 588 }
matthiasm@43 589 }
matthiasm@43 590 // right side:
matthiasm@43 591 float maxR = 0;
matthiasm@43 592 unsigned maxindR = nChord-1;
matthiasm@43 593 for (unsigned kChord = 0; kChord < chordCandidates.size(); kChord++) {
matthiasm@43 594 unsigned iChord = chordCandidates[kChord];
matthiasm@43 595 float currsum = 0;
matthiasm@43 596 for (unsigned iFrame = iWF-1; iFrame < 2*halfwindowlength; ++iFrame) {
matthiasm@43 597 currsum += chordogram[count+iFrame][iChord];
matthiasm@43 598 }
matthiasm@43 599 if (iChord == nChord-1) currsum *= 0.8;
matthiasm@43 600 if (currsum > maxR) {
matthiasm@43 601 maxR = currsum;
matthiasm@43 602 maxindR = iChord;
matthiasm@43 603 }
matthiasm@43 604 }
matthiasm@43 605 if (maxL+maxR > maxval) {
matthiasm@43 606 maxval = maxL+maxR;
matthiasm@43 607 maxindex = iWF;
matthiasm@43 608 bestchordL = maxindL;
matthiasm@43 609 bestchordR = maxindR;
matthiasm@43 610 }
matthiasm@43 611
Chris@23 612 }
matthiasm@43 613 // cerr << "maxindex: " << maxindex << ", bestchordR is " << bestchordR << ", of frame " << count << endl;
matthiasm@43 614 // add a score to every chord-frame-point that was part of a maximum
matthiasm@43 615 for (unsigned iFrame = 0; iFrame < maxindex-1; ++iFrame) {
matthiasm@43 616 scoreChordogram[iFrame+count][bestchordL]++;
matthiasm@43 617 }
matthiasm@43 618 for (unsigned iFrame = maxindex-1; iFrame < 2*halfwindowlength; ++iFrame) {
matthiasm@43 619 scoreChordogram[iFrame+count][bestchordR]++;
matthiasm@43 620 }
matthiasm@50 621 if (bestchordL != bestchordR) {
matthiasm@50 622 chordchange[maxindex+count] += (halfwindowlength - abs(maxindex-halfwindowlength)) * 2.0 / halfwindowlength;
matthiasm@50 623 }
matthiasm@43 624 count++;
Chris@23 625 }
matthiasm@43 626 // cerr << "******* agent finished *******" << endl;
matthiasm@43 627 count = 0;
matthiasm@43 628 for (vector<Vamp::RealTime>::iterator it = timestamps.begin(); it != timestamps.end(); ++it) {
matthiasm@43 629 float maxval = 0; // will be the value of the most salient chord in this frame
matthiasm@43 630 float maxindex = 0; //... and the index thereof
matthiasm@43 631 for (unsigned iChord = 0; iChord < nChord; iChord++) {
matthiasm@43 632 if (scoreChordogram[count][iChord] > maxval) {
matthiasm@43 633 maxval = scoreChordogram[count][iChord];
matthiasm@43 634 maxindex = iChord;
matthiasm@43 635 // cerr << iChord << endl;
matthiasm@43 636 }
matthiasm@43 637 }
matthiasm@43 638 chordSequence.push_back(maxindex);
matthiasm@43 639 count++;
Chris@23 640 }
matthiasm@43 641
matthiasm@43 642
matthiasm@43 643 // mode filter on chordSequence
matthiasm@43 644 count = 0;
matthiasm@43 645 string oldChord = "";
matthiasm@43 646 for (vector<Vamp::RealTime>::iterator it = timestamps.begin(); it != timestamps.end(); ++it) {
matthiasm@43 647 Feature chord_feature; // chord estimate
matthiasm@43 648 chord_feature.hasTimestamp = true;
matthiasm@43 649 chord_feature.timestamp = *it;
matthiasm@43 650 // Feature currentChord; // chord estimate
matthiasm@43 651 // currentChord.hasTimestamp = true;
matthiasm@43 652 // currentChord.timestamp = currentChromas.timestamp;
matthiasm@43 653
matthiasm@43 654 vector<int> chordCount = vector<int>(nChord,0);
matthiasm@43 655 int maxChordCount = 0;
matthiasm@43 656 int maxChordIndex = nChord-1;
matthiasm@43 657 string maxChord;
matthiasm@43 658 int startIndex = max(count - halfwindowlength/2,0);
matthiasm@43 659 int endIndex = min(int(chordogram.size()), count + halfwindowlength/2);
matthiasm@43 660 for (int i = startIndex; i < endIndex; i++) {
matthiasm@43 661 chordCount[chordSequence[i]]++;
matthiasm@43 662 if (chordCount[chordSequence[i]] > maxChordCount) {
matthiasm@43 663 // cerr << "start index " << startIndex << endl;
matthiasm@43 664 maxChordCount++;
matthiasm@43 665 maxChordIndex = chordSequence[i];
matthiasm@43 666 maxChord = m_chordnames[maxChordIndex];
matthiasm@43 667 }
matthiasm@43 668 }
matthiasm@43 669 // chordSequence[count] = maxChordIndex;
matthiasm@43 670 // cerr << maxChordIndex << endl;
matthiasm@50 671 // cerr << chordchange[count] << endl;
matthiasm@43 672 if (oldChord != maxChord) {
matthiasm@43 673 oldChord = maxChord;
matthiasm@43 674 chord_feature.label = m_chordnames[maxChordIndex];
matthiasm@43 675 fsOut[0].push_back(chord_feature);
matthiasm@43 676 }
matthiasm@43 677 count++;
Chris@23 678 }
Chris@23 679 }
matthiasm@43 680 Feature chord_feature; // last chord estimate
matthiasm@43 681 chord_feature.hasTimestamp = true;
matthiasm@43 682 chord_feature.timestamp = timestamps[timestamps.size()-1];
matthiasm@43 683 chord_feature.label = "N";
matthiasm@43 684 fsOut[0].push_back(chord_feature);
Chris@23 685 cerr << "done." << endl;
matthiasm@50 686
matthiasm@50 687 for (int iFrame = 0; iFrame < nFrame; iFrame++) {
matthiasm@50 688 Feature chordchange_feature;
matthiasm@50 689 chordchange_feature.hasTimestamp = true;
matthiasm@50 690 chordchange_feature.timestamp = timestamps[iFrame];
matthiasm@50 691 chordchange_feature.values.push_back(chordchange[iFrame]);
matthiasm@50 692 fsOut[1].push_back(chordchange_feature);
matthiasm@50 693 }
matthiasm@50 694
matthiasm@50 695
matthiasm@50 696
matthiasm@50 697
Chris@23 698 return fsOut;
matthiasm@0 699 }