annotate NNLSChroma.cpp @ 22:444c344681f3 matthiasm-plugin

* Rather than worry about provenance of C versions, why not just use the FORTRAN? (We can back this out if it doesn't go well with the build scripts)
author Chris Cannam
date Thu, 21 Oct 2010 11:58:28 +0100
parents e72c4ad432d8
children 93c836cfb8c5
rev   line source
matthiasm@0 1
matthiasm@0 2 #include "NNLSChroma.h"
matthiasm@0 3 #include <cmath>
matthiasm@10 4 // #include <omp.h>
matthiasm@0 5 #include <list>
matthiasm@0 6 #include <iostream>
matthiasm@3 7 #include <fstream>
matthiasm@0 8 #include <sstream>
matthiasm@0 9 #include <cassert>
matthiasm@7 10 #include <cstdlib>
matthiasm@0 11 #include <cstdio>
matthiasm@7 12 #include <boost/tokenizer.hpp>
matthiasm@7 13 #include <boost/iostreams/device/file.hpp>
matthiasm@7 14 #include <boost/iostreams/stream.hpp>
matthiasm@7 15 #include <boost/lexical_cast.hpp>
matthiasm@1 16 #include "nnls.h"
matthiasm@0 17 #include "chorddict.cpp"
matthiasm@9 18
matthiasm@10 19 // #include <omp.h>
matthiasm@10 20 // #define N 1000
matthiasm@10 21 // #define CHUNKSIZE 100
matthiasm@9 22
matthiasm@9 23
matthiasm@0 24 using namespace std;
matthiasm@7 25 using namespace boost;
matthiasm@0 26
matthiasm@0 27 const float sinvalue = 0.866025404;
matthiasm@0 28 const float cosvalue = -0.5;
matthiasm@0 29 const float hammingwind[19] = {0.0082, 0.0110, 0.0191, 0.0316, 0.0470, 0.0633, 0.0786, 0.0911, 0.0992, 0.1020, 0.0992, 0.0911, 0.0786, 0.0633, 0.0470, 0.0316, 0.0191, 0.0110, 0.0082};
matthiasm@0 30 const float basswindow[] = {0.001769, 0.015848, 0.043608, 0.084265, 0.136670, 0.199341, 0.270509, 0.348162, 0.430105, 0.514023, 0.597545, 0.678311, 0.754038, 0.822586, 0.882019, 0.930656, 0.967124, 0.990393, 0.999803, 0.995091, 0.976388, 0.944223, 0.899505, 0.843498, 0.777785, 0.704222, 0.624888, 0.542025, 0.457975, 0.375112, 0.295778, 0.222215, 0.156502, 0.100495, 0.055777, 0.023612, 0.004909, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000};
matthiasm@0 31 const float treblewindow[] = {0.000350, 0.003144, 0.008717, 0.017037, 0.028058, 0.041719, 0.057942, 0.076638, 0.097701, 0.121014, 0.146447, 0.173856, 0.203090, 0.233984, 0.266366, 0.300054, 0.334860, 0.370590, 0.407044, 0.444018, 0.481304, 0.518696, 0.555982, 0.592956, 0.629410, 0.665140, 0.699946, 0.733634, 0.766016, 0.796910, 0.826144, 0.853553, 0.878986, 0.902299, 0.923362, 0.942058, 0.958281, 0.971942, 0.982963, 0.991283, 0.996856, 0.999650, 0.999650, 0.996856, 0.991283, 0.982963, 0.971942, 0.958281, 0.942058, 0.923362, 0.902299, 0.878986, 0.853553, 0.826144, 0.796910, 0.766016, 0.733634, 0.699946, 0.665140, 0.629410, 0.592956, 0.555982, 0.518696, 0.481304, 0.444018, 0.407044, 0.370590, 0.334860, 0.300054, 0.266366, 0.233984, 0.203090, 0.173856, 0.146447, 0.121014, 0.097701, 0.076638, 0.057942, 0.041719, 0.028058, 0.017037, 0.008717, 0.003144, 0.000350};
matthiasm@0 32 const char* notenames[24] = {"A (bass)","Bb (bass)","B (bass)","C (bass)","C# (bass)","D (bass)","Eb (bass)","E (bass)","F (bass)","F# (bass)","G (bass)","Ab (bass)",
matthiasm@0 33 "A","Bb","B","C","C#","D","Eb","E","F","F#","G","Ab"};
matthiasm@7 34
matthiasm@7 35 const char* bassnames[12][12] ={
matthiasm@7 36 {"A","","B","C","C#","D","","E","","F#","G","G#"},
matthiasm@7 37 {"Bb","","C","Db","D","Eb","","F","","G","Ab","A"},
matthiasm@7 38 {"B","","C#","D","D#","E","","F#","","G#","A","A#"},
matthiasm@7 39 {"C","","D","Eb","E","F","","G","","A","Bb","B"},
matthiasm@7 40 {"C#","","D#","E","E#","F#","","G#","","A#","B","B#"},
matthiasm@7 41 {"D","","E","F","F#","G","","A","","B","C","C#"},
matthiasm@7 42 {"Eb","","F","Gb","G","Ab","","Bb","","C","Db","D"},
matthiasm@7 43 {"E","","F#","G","G#","A","","B","","C#","D","D#"},
matthiasm@7 44 {"F","","G","Ab","A","Bb","","C","","D","Eb","E"},
matthiasm@7 45 {"F#","","G#","A","A#","B","","C#","","D#","E","E#"},
matthiasm@7 46 {"G","","A","Bb","B","C","","D","","E","F","F#"},
matthiasm@7 47 {"Ab","","Bb","Cb","C","Db","","Eb","","F","Gb","G"}
matthiasm@7 48 };
matthiasm@17 49
matthiasm@17 50
matthiasm@17 51 // const char* bassnames[12][12] ={
matthiasm@17 52 // {"1","","2","b3","3","4","","5","","6","b7","7"},
matthiasm@17 53 // {"1","","2","b3","3","4","","5","","6","b7","7"},
matthiasm@17 54 // {"1","","2","b3","3","4","","5","","6","b7","7"},
matthiasm@17 55 // {"1","","2","b3","3","4","","5","","6","b7","7"},
matthiasm@17 56 // {"1","","2","b3","3","4","","5","","6","b7","7"},
matthiasm@17 57 // {"1","","2","b3","3","4","","5","","6","b7","7"},
matthiasm@17 58 // {"1","","2","b3","3","4","","5","","6","b7","7"},
matthiasm@17 59 // {"1","","2","b3","3","4","","5","","6","b7","7"},
matthiasm@17 60 // {"1","","2","b3","3","4","","5","","6","b7","7"},
matthiasm@17 61 // {"1","","2","b3","3","4","","5","","6","b7","7"},
matthiasm@17 62 // {"1","","2","b3","3","4","","5","","6","b7","7"},
matthiasm@17 63 // {"1","","2","b3","3","4","","5","","6","b7","7"},
matthiasm@17 64 // };
matthiasm@17 65
matthiasm@0 66 const vector<float> hw(hammingwind, hammingwind+19);
matthiasm@0 67 const int nNote = 256;
matthiasm@0 68
matthiasm@0 69 /** Special Convolution
matthiasm@0 70 special convolution is as long as the convolvee, i.e. the first argument. in the valid core part of the
matthiasm@0 71 convolution it contains the usual convolution values, but the pads at the beginning (ending) have the same values
matthiasm@0 72 as the first (last) valid convolution bin.
matthiasm@0 73 **/
matthiasm@0 74
matthiasm@0 75 const bool debug_on = false;
matthiasm@0 76
matthiasm@0 77 vector<float> SpecialConvolution(vector<float> convolvee, vector<float> kernel)
matthiasm@0 78 {
matthiasm@0 79 float s;
matthiasm@0 80 int m, n;
matthiasm@0 81 int lenConvolvee = convolvee.size();
matthiasm@0 82 int lenKernel = kernel.size();
matthiasm@0 83
matthiasm@0 84 vector<float> Z(256,0);
matthiasm@0 85 assert(lenKernel % 2 != 0); // no exception handling !!!
matthiasm@0 86
matthiasm@0 87 for (n = lenKernel - 1; n < lenConvolvee; n++) {
matthiasm@0 88 s=0.0;
matthiasm@0 89 for (m = 0; m < lenKernel; m++) {
matthiasm@0 90 // cerr << "m = " << m << ", n = " << n << ", n-m = " << (n-m) << '\n';
matthiasm@0 91 s += convolvee[n-m] * kernel[m];
matthiasm@0 92 // if (debug_on) cerr << "--> s = " << s << '\n';
matthiasm@0 93 }
matthiasm@0 94 // cerr << n - lenKernel/2 << endl;
matthiasm@0 95 Z[n -lenKernel/2] = s;
matthiasm@0 96 }
matthiasm@0 97
matthiasm@0 98 // fill upper and lower pads
matthiasm@0 99 for (n = 0; n < lenKernel/2; n++) Z[n] = Z[lenKernel/2];
matthiasm@0 100 for (n = lenConvolvee; n < lenConvolvee +lenKernel/2; n++) Z[n - lenKernel/2] =
matthiasm@0 101 Z[lenConvolvee - lenKernel/2 - 1];
matthiasm@0 102 return Z;
matthiasm@0 103 }
matthiasm@0 104
matthiasm@0 105 // vector<float> FftBin2Frequency(vector<float> binnumbers, int fs, int blocksize)
matthiasm@0 106 // {
matthiasm@0 107 // vector<float> freq(binnumbers.size, 0.0);
matthiasm@0 108 // for (unsigned i = 0; i < binnumbers.size; ++i) {
matthiasm@0 109 // freq[i] = (binnumbers[i]-1.0) * fs * 1.0 / blocksize;
matthiasm@0 110 // }
matthiasm@0 111 // return freq;
matthiasm@0 112 // }
matthiasm@0 113
matthiasm@0 114 float cospuls(float x, float centre, float width)
matthiasm@0 115 {
matthiasm@0 116 float recipwidth = 1.0/width;
matthiasm@0 117 if (abs(x - centre) <= 0.5 * width) {
matthiasm@0 118 return cos((x-centre)*2*M_PI*recipwidth)*.5+.5;
matthiasm@0 119 }
matthiasm@0 120 return 0.0;
matthiasm@0 121 }
matthiasm@0 122
matthiasm@0 123 float pitchCospuls(float x, float centre, int binsperoctave)
matthiasm@0 124 {
matthiasm@0 125 float warpedf = -binsperoctave * (log2(centre) - log2(x));
matthiasm@0 126 float out = cospuls(warpedf, 0.0, 2.0);
matthiasm@0 127 // now scale to correct for note density
matthiasm@0 128 float c = log(2.0)/binsperoctave;
matthiasm@0 129 if (x > 0) {
matthiasm@0 130 out = out / (c * x);
matthiasm@0 131 } else {
matthiasm@0 132 out = 0;
matthiasm@0 133 }
matthiasm@0 134 return out;
matthiasm@0 135 }
matthiasm@0 136
matthiasm@0 137 bool logFreqMatrix(int fs, int blocksize, float *outmatrix) {
matthiasm@0 138
matthiasm@0 139 int binspersemitone = 3; // this must be 3
matthiasm@0 140 int minoctave = 0; // this must be 0
matthiasm@0 141 int maxoctave = 7; // this must be 7
matthiasm@1 142 int oversampling = 80;
matthiasm@0 143
matthiasm@0 144 // linear frequency vector
matthiasm@0 145 vector<float> fft_f;
matthiasm@0 146 for (int i = 0; i < blocksize/2; ++i) {
matthiasm@0 147 fft_f.push_back(i * (fs * 1.0 / blocksize));
matthiasm@0 148 }
matthiasm@0 149 float fft_width = fs * 2.0 / blocksize;
matthiasm@0 150
matthiasm@0 151 // linear oversampled frequency vector
matthiasm@0 152 vector<float> oversampled_f;
matthiasm@0 153 for (unsigned int i = 0; i < oversampling * blocksize/2; ++i) {
matthiasm@0 154 oversampled_f.push_back(i * ((fs * 1.0 / blocksize) / oversampling));
matthiasm@0 155 }
matthiasm@0 156
matthiasm@0 157 // pitch-spaced frequency vector
matthiasm@0 158 int minMIDI = 21 + minoctave * 12 - 1; // this includes one additional semitone!
matthiasm@0 159 int maxMIDI = 21 + maxoctave * 12; // this includes one additional semitone!
matthiasm@0 160 vector<float> cq_f;
matthiasm@0 161 float oob = 1.0/binspersemitone; // one over binspersemitone
matthiasm@0 162 cq_f.push_back(440 * pow(2.0,0.083333 * (minMIDI-69))); // 0.083333 is approx 1/12
matthiasm@0 163 cq_f.push_back(440 * pow(2.0,0.083333 * (minMIDI+oob-69)));
matthiasm@0 164 for (int i = minMIDI + 1; i < maxMIDI; ++i) {
matthiasm@0 165 for (int k = -1; k < 2; ++k) {
matthiasm@0 166 cq_f.push_back(440 * pow(2.0,0.083333333333 * (i+oob*k-69)));
matthiasm@0 167 }
matthiasm@0 168 }
matthiasm@0 169 cq_f.push_back(440 * pow(2.0,0.083333 * (minMIDI-oob-69)));
matthiasm@0 170 cq_f.push_back(440 * pow(2.0,0.083333 * (maxMIDI-69)));
matthiasm@0 171
matthiasm@0 172 int nFFT = fft_f.size();
matthiasm@0 173
matthiasm@0 174 vector<float> fft_activation;
matthiasm@0 175 for (int iOS = 0; iOS < 2 * oversampling; ++iOS) {
matthiasm@0 176 float cosp = cospuls(oversampled_f[iOS],fft_f[1],fft_width);
matthiasm@0 177 fft_activation.push_back(cosp);
matthiasm@0 178 // cerr << cosp << endl;
matthiasm@0 179 }
matthiasm@0 180
matthiasm@0 181 float cq_activation;
matthiasm@0 182 for (int iFFT = 1; iFFT < nFFT; ++iFFT) {
matthiasm@0 183 // find frequency stretch where the oversampled vector can be non-zero (i.e. in a window of width fft_width around the current frequency)
matthiasm@0 184 int curr_start = oversampling * iFFT - oversampling;
matthiasm@0 185 int curr_end = oversampling * iFFT + oversampling; // don't know if I should add "+1" here
matthiasm@0 186 // cerr << oversampled_f[curr_start] << " " << fft_f[iFFT] << " " << oversampled_f[curr_end] << endl;
matthiasm@0 187 for (unsigned iCQ = 0; iCQ < cq_f.size(); ++iCQ) {
matthiasm@0 188 outmatrix[iFFT + nFFT * iCQ] = 0;
matthiasm@1 189 if (cq_f[iCQ] * pow(2.0, 0.084) + fft_width > fft_f[iFFT] && cq_f[iCQ] * pow(2.0, -0.084 * 2) - fft_width < fft_f[iFFT]) { // within a generous neighbourhood
matthiasm@0 190 for (int iOS = curr_start; iOS < curr_end; ++iOS) {
matthiasm@0 191 cq_activation = pitchCospuls(oversampled_f[iOS],cq_f[iCQ],binspersemitone*12);
matthiasm@0 192 // cerr << oversampled_f[iOS] << " " << cq_f[iCQ] << " " << cq_activation << endl;
matthiasm@0 193 outmatrix[iFFT + nFFT * iCQ] += cq_activation * fft_activation[iOS-curr_start];
matthiasm@0 194 }
matthiasm@0 195 // if (iCQ == 1 || iCQ == 2) {
matthiasm@0 196 // cerr << " " << outmatrix[iFFT + nFFT * iCQ] << endl;
matthiasm@0 197 // }
matthiasm@0 198 }
matthiasm@0 199 }
matthiasm@0 200 }
matthiasm@0 201 return true;
matthiasm@0 202 }
matthiasm@0 203
matthiasm@17 204 void dictionaryMatrix(float* dm) {
matthiasm@1 205 int binspersemitone = 3; // this must be 3
matthiasm@1 206 int minoctave = 0; // this must be 0
matthiasm@1 207 int maxoctave = 7; // this must be 7
matthiasm@4 208 float s_param = 0.7;
matthiasm@1 209
matthiasm@1 210 // pitch-spaced frequency vector
matthiasm@1 211 int minMIDI = 21 + minoctave * 12 - 1; // this includes one additional semitone!
matthiasm@1 212 int maxMIDI = 21 + maxoctave * 12; // this includes one additional semitone!
matthiasm@1 213 vector<float> cq_f;
matthiasm@1 214 float oob = 1.0/binspersemitone; // one over binspersemitone
matthiasm@1 215 cq_f.push_back(440 * pow(2.0,0.083333 * (minMIDI-69))); // 0.083333 is approx 1/12
matthiasm@1 216 cq_f.push_back(440 * pow(2.0,0.083333 * (minMIDI+oob-69)));
matthiasm@1 217 for (int i = minMIDI + 1; i < maxMIDI; ++i) {
matthiasm@1 218 for (int k = -1; k < 2; ++k) {
matthiasm@1 219 cq_f.push_back(440 * pow(2.0,0.083333333333 * (i+oob*k-69)));
matthiasm@1 220 }
matthiasm@1 221 }
matthiasm@1 222 cq_f.push_back(440 * pow(2.0,0.083333 * (minMIDI-oob-69)));
matthiasm@1 223 cq_f.push_back(440 * pow(2.0,0.083333 * (maxMIDI-69)));
matthiasm@1 224
matthiasm@1 225 float curr_f;
matthiasm@1 226 float floatbin;
matthiasm@1 227 float curr_amp;
matthiasm@1 228 // now for every combination calculate the matrix element
matthiasm@1 229 for (unsigned iOut = 0; iOut < 12 * (maxoctave - minoctave); ++iOut) {
matthiasm@3 230 // cerr << iOut << endl;
matthiasm@1 231 for (unsigned iHarm = 1; iHarm <= 20; ++iHarm) {
matthiasm@1 232 curr_f = 440 * pow(2,(minMIDI-69+iOut)*1.0/12) * iHarm;
matthiasm@3 233 // if (curr_f > cq_f[nNote-1]) break;
matthiasm@3 234 floatbin = ((iOut + 1) * binspersemitone + 1) + binspersemitone * 12 * log2(iHarm);
matthiasm@3 235 // cerr << floatbin << endl;
matthiasm@1 236 curr_amp = pow(s_param,float(iHarm-1));
matthiasm@3 237 // cerr << "curramp" << curr_amp << endl;
matthiasm@1 238 for (unsigned iNote = 0; iNote < nNote; ++iNote) {
matthiasm@3 239 if (abs(iNote+1.0-floatbin)<2) {
matthiasm@3 240 dm[iNote + 256 * iOut] += cospuls(iNote+1.0, floatbin, binspersemitone + 0.0) * curr_amp;
matthiasm@3 241 // dm[iNote + nNote * iOut] += 1 * curr_amp;
matthiasm@3 242 }
matthiasm@1 243 }
matthiasm@3 244 }
matthiasm@1 245 }
matthiasm@3 246
matthiasm@3 247
matthiasm@1 248 }
matthiasm@1 249
matthiasm@7 250 string get_env_var( std::string const & key ) {
matthiasm@7 251 char * val;
matthiasm@7 252 val = getenv( key.c_str() );
matthiasm@7 253 string retval;
matthiasm@7 254 if (val != NULL) {
matthiasm@7 255 retval = val;
matthiasm@7 256 }
matthiasm@7 257 return retval;
matthiasm@7 258 }
matthiasm@7 259
matthiasm@7 260
matthiasm@9 261 vector<string> chordDictionary(vector<float> *mchorddict) {
matthiasm@7 262 // ifstream chordDictFile;
matthiasm@7 263 string chordDictFilename(get_env_var("VAMP_PATH")+"/chord.dict");
matthiasm@7 264 // string instring[] = ",1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0\nm,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0\n6,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,0\n7,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,1,0\nmaj7,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,1\nmin7,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0\n,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0\n,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0\ndim,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0\naug,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0\n";
matthiasm@7 265 typedef tokenizer<char_separator<char> > Tok;
matthiasm@7 266 // char_separator<char> sep; // default constructed
matthiasm@17 267 char_separator<char> sep(",; ","=");
matthiasm@7 268 iostreams::stream<iostreams::file_source> chordDictFile(chordDictFilename.c_str());
matthiasm@7 269 string line;
matthiasm@7 270 int iElement = 0;
matthiasm@7 271 int nChord = 0;
matthiasm@7 272
matthiasm@7 273 vector<string> loadedChordNames;
matthiasm@7 274 vector<float> loadedChordDict;
matthiasm@7 275 if (chordDictFile.is_open()) {
matthiasm@7 276 while (std::getline(chordDictFile, line)) { // loop over lines in chord.dict file
matthiasm@7 277 // first, get the chord definition
matthiasm@7 278 string chordType;
matthiasm@7 279 vector<float> tempPCVector;
matthiasm@7 280 // cerr << line << endl;
matthiasm@7 281 if (!line.empty() && line.substr(0,1) != "#") {
matthiasm@7 282 Tok tok(line, sep);
matthiasm@7 283 for(Tok::iterator tok_iter = tok.begin(); tok_iter != tok.end(); ++tok_iter) { // loop over line elements
matthiasm@7 284 string tempString = *tok_iter;
matthiasm@7 285 // cerr << tempString << endl;
matthiasm@7 286 if (tok_iter == tok.begin()) { // either the chord name or a colon
matthiasm@17 287 if (tempString == "=") {
matthiasm@7 288 chordType = "";
matthiasm@7 289 } else {
matthiasm@7 290 chordType = tempString;
matthiasm@7 291 tok_iter++; // is this cheating ? :)
matthiasm@7 292 }
matthiasm@7 293 } else {
matthiasm@7 294 tempPCVector.push_back(lexical_cast<float>(*tok_iter));
matthiasm@7 295 }
matthiasm@7 296 }
matthiasm@7 297
matthiasm@7 298 // now make all 12 chords of every type
matthiasm@7 299 for (unsigned iSemitone = 0; iSemitone < 12; iSemitone++) {
matthiasm@7 300 // add bass slash notation
matthiasm@7 301 string slashNotation = "";
matthiasm@7 302 for (unsigned kSemitone = 1; kSemitone < 12; kSemitone++) {
matthiasm@7 303 if (tempPCVector[(kSemitone) % 12] > 0.99) {
matthiasm@7 304 slashNotation = bassnames[iSemitone][kSemitone];
matthiasm@7 305 }
matthiasm@7 306 }
matthiasm@7 307 for (unsigned kSemitone = 0; kSemitone < 12; kSemitone++) { // bass pitch classes
matthiasm@9 308 // cerr << ((kSemitone - iSemitone + 12) % 12) << endl;
matthiasm@9 309 float bassValue = 0;
matthiasm@9 310 if (tempPCVector[(kSemitone - iSemitone + 12) % 12]==1) {
matthiasm@9 311 bassValue = 1;
matthiasm@9 312 } else {
matthiasm@10 313 if (tempPCVector[((kSemitone - iSemitone + 12) % 12) + 12] == 1) bassValue = 0.5;
matthiasm@9 314 }
matthiasm@9 315 loadedChordDict.push_back(bassValue);
matthiasm@7 316 }
matthiasm@7 317 for (unsigned kSemitone = 0; kSemitone < 12; kSemitone++) { // chord pitch classes
matthiasm@7 318 loadedChordDict.push_back(tempPCVector[((kSemitone - iSemitone + 12) % 12) + 12]);
matthiasm@7 319 }
matthiasm@7 320 ostringstream os;
matthiasm@7 321 if (slashNotation.empty()) {
matthiasm@7 322 os << notenames[12+iSemitone] << chordType;
matthiasm@7 323 } else {
matthiasm@7 324 os << notenames[12+iSemitone] << chordType << "/" << slashNotation;
matthiasm@7 325 }
matthiasm@17 326 // cerr << os.str() << endl;
matthiasm@7 327 loadedChordNames.push_back(os.str());
matthiasm@7 328 }
matthiasm@7 329 }
matthiasm@7 330 }
matthiasm@7 331 // N type
matthiasm@7 332 loadedChordNames.push_back("N");
matthiasm@7 333 for (unsigned kSemitone = 0; kSemitone < 12; kSemitone++) loadedChordDict.push_back(0.5);
matthiasm@7 334 for (unsigned kSemitone = 0; kSemitone < 12; kSemitone++) loadedChordDict.push_back(1.0);
matthiasm@7 335
matthiasm@7 336 // normalise
matthiasm@7 337 float sum = 0;
matthiasm@7 338 for (int i = 0; i < loadedChordDict.size(); i++) {
matthiasm@7 339 sum += pow(loadedChordDict[i],2);
matthiasm@7 340 if (i % 24 == 23) {
matthiasm@7 341 float invertedsum = 1.0/sqrt(sum);
matthiasm@7 342 for (int k = 0; k < 24; k++) {
matthiasm@7 343 loadedChordDict[i-k] *= invertedsum;
matthiasm@7 344 }
matthiasm@7 345 sum = 0;
matthiasm@7 346 }
matthiasm@7 347
matthiasm@7 348 }
matthiasm@7 349
matthiasm@7 350
matthiasm@7 351 nChord = 0;
matthiasm@7 352 for (int i = 0; i < loadedChordNames.size(); i++) {
matthiasm@7 353 nChord++;
matthiasm@7 354 }
matthiasm@7 355 chordDictFile.close();
matthiasm@7 356
matthiasm@7 357
matthiasm@9 358 // mchorddict = new float[nChord*24];
matthiasm@7 359 for (int i = 0; i < nChord*24; i++) {
matthiasm@9 360 mchorddict->push_back(loadedChordDict[i]);
matthiasm@7 361 }
matthiasm@9 362
matthiasm@7 363 } else {// use default from chorddict.cpp
matthiasm@9 364 // mchorddict = new float[nChorddict];
matthiasm@7 365 for (int i = 0; i < nChorddict; i++) {
matthiasm@9 366 mchorddict->push_back(chorddict[i]);
matthiasm@7 367 }
matthiasm@7 368
matthiasm@7 369 nChord = nChorddict/24;
matthiasm@7 370 // mchordnames = new string[nChorddict/24];
matthiasm@7 371 char buffer1 [50];
matthiasm@7 372 for (int i = 0; i < nChorddict/24; i++) {
matthiasm@7 373 if (i < nChorddict/24 - 1) {
matthiasm@7 374 sprintf(buffer1, "%s%s", notenames[i % 12 + 12], chordtypes[i]);
matthiasm@7 375 } else {
matthiasm@7 376 sprintf(buffer1, "N");
matthiasm@7 377 }
matthiasm@7 378 ostringstream os;
matthiasm@7 379 os << buffer1;
matthiasm@9 380 loadedChordNames.push_back(os.str());
matthiasm@9 381
matthiasm@7 382 }
matthiasm@7 383
matthiasm@7 384 }
matthiasm@9 385 // cerr << "before leaving" << chordnames[1] << endl;
matthiasm@9 386 return loadedChordNames;
matthiasm@7 387 }
matthiasm@0 388
matthiasm@0 389 NNLSChroma::NNLSChroma(float inputSampleRate) :
matthiasm@0 390 Plugin(inputSampleRate),
matthiasm@0 391 m_fl(0),
matthiasm@0 392 m_blockSize(0),
matthiasm@0 393 m_stepSize(0),
matthiasm@0 394 m_lengthOfNoteIndex(0),
matthiasm@0 395 m_meanTuning0(0),
matthiasm@0 396 m_meanTuning1(0),
matthiasm@0 397 m_meanTuning2(0),
matthiasm@0 398 m_localTuning0(0),
matthiasm@0 399 m_localTuning1(0),
matthiasm@0 400 m_localTuning2(0),
matthiasm@4 401 m_paling(1.0),
matthiasm@3 402 m_preset(0.0),
matthiasm@0 403 m_localTuning(0),
matthiasm@0 404 m_kernelValue(0),
matthiasm@0 405 m_kernelFftIndex(0),
matthiasm@0 406 m_kernelNoteIndex(0),
matthiasm@1 407 m_dict(0),
matthiasm@0 408 m_tuneLocal(false),
matthiasm@7 409 m_dictID(0),
matthiasm@7 410 m_chorddict(0),
matthiasm@12 411 m_chordnames(0),
matthiasm@17 412 m_doNormalizeChroma(0),
matthiasm@17 413 m_rollon(0.01)
matthiasm@0 414 {
matthiasm@0 415 if (debug_on) cerr << "--> NNLSChroma" << endl;
matthiasm@7 416
matthiasm@7 417 // make the *note* dictionary matrix
matthiasm@3 418 m_dict = new float[nNote * 84];
matthiasm@3 419 for (unsigned i = 0; i < nNote * 84; ++i) m_dict[i] = 0.0;
matthiasm@1 420 dictionaryMatrix(m_dict);
matthiasm@7 421
matthiasm@7 422 // get the *chord* dictionary from file (if the file exists)
matthiasm@9 423 m_chordnames = chordDictionary(&m_chorddict);
matthiasm@0 424 }
matthiasm@0 425
matthiasm@0 426
matthiasm@0 427 NNLSChroma::~NNLSChroma()
matthiasm@0 428 {
matthiasm@0 429 if (debug_on) cerr << "--> ~NNLSChroma" << endl;
matthiasm@1 430 delete [] m_dict;
matthiasm@9 431 // delete [] m_chorddict;
matthiasm@7 432 // delete m_chordnames;
matthiasm@0 433 }
matthiasm@0 434
matthiasm@0 435 string
matthiasm@0 436 NNLSChroma::getIdentifier() const
matthiasm@0 437 {
matthiasm@0 438 if (debug_on) cerr << "--> getIdentifier" << endl;
matthiasm@0 439 return "nnls_chroma";
matthiasm@0 440 }
matthiasm@0 441
matthiasm@0 442 string
matthiasm@0 443 NNLSChroma::getName() const
matthiasm@0 444 {
matthiasm@0 445 if (debug_on) cerr << "--> getName" << endl;
matthiasm@0 446 return "NNLS Chroma";
matthiasm@0 447 }
matthiasm@0 448
matthiasm@0 449 string
matthiasm@0 450 NNLSChroma::getDescription() const
matthiasm@0 451 {
matthiasm@0 452 // Return something helpful here!
matthiasm@0 453 if (debug_on) cerr << "--> getDescription" << endl;
matthiasm@13 454 return "This plugin provides a number of features derived from a log-frequency amplitude spectrum of the DFT: some variants of the log-frequency spectrum, including a semitone spectrum derived from approximate transcription using the NNLS algorithm; based on this semitone spectrum, chroma features and a simple chord estimate.";
matthiasm@0 455 }
matthiasm@0 456
matthiasm@0 457 string
matthiasm@0 458 NNLSChroma::getMaker() const
matthiasm@0 459 {
matthiasm@0 460 if (debug_on) cerr << "--> getMaker" << endl;
matthiasm@0 461 // Your name here
matthiasm@0 462 return "Matthias Mauch";
matthiasm@0 463 }
matthiasm@0 464
matthiasm@0 465 int
matthiasm@0 466 NNLSChroma::getPluginVersion() const
matthiasm@0 467 {
matthiasm@0 468 if (debug_on) cerr << "--> getPluginVersion" << endl;
matthiasm@0 469 // Increment this each time you release a version that behaves
matthiasm@0 470 // differently from the previous one
matthiasm@0 471 return 1;
matthiasm@0 472 }
matthiasm@0 473
matthiasm@0 474 string
matthiasm@0 475 NNLSChroma::getCopyright() const
matthiasm@0 476 {
matthiasm@0 477 if (debug_on) cerr << "--> getCopyright" << endl;
matthiasm@0 478 // This function is not ideally named. It does not necessarily
matthiasm@0 479 // need to say who made the plugin -- getMaker does that -- but it
matthiasm@0 480 // should indicate the terms under which it is distributed. For
matthiasm@0 481 // example, "Copyright (year). All Rights Reserved", or "GPL"
matthiasm@0 482 return "Copyright (2010). All rights reserved.";
matthiasm@0 483 }
matthiasm@0 484
matthiasm@0 485 NNLSChroma::InputDomain
matthiasm@0 486 NNLSChroma::getInputDomain() const
matthiasm@0 487 {
matthiasm@0 488 if (debug_on) cerr << "--> getInputDomain" << endl;
matthiasm@0 489 return FrequencyDomain;
matthiasm@0 490 }
matthiasm@0 491
matthiasm@0 492 size_t
matthiasm@0 493 NNLSChroma::getPreferredBlockSize() const
matthiasm@0 494 {
matthiasm@0 495 if (debug_on) cerr << "--> getPreferredBlockSize" << endl;
matthiasm@0 496 return 16384; // 0 means "I can handle any block size"
matthiasm@0 497 }
matthiasm@0 498
matthiasm@0 499 size_t
matthiasm@0 500 NNLSChroma::getPreferredStepSize() const
matthiasm@0 501 {
matthiasm@0 502 if (debug_on) cerr << "--> getPreferredStepSize" << endl;
matthiasm@0 503 return 2048; // 0 means "anything sensible"; in practice this
matthiasm@0 504 // means the same as the block size for TimeDomain
matthiasm@0 505 // plugins, or half of it for FrequencyDomain plugins
matthiasm@0 506 }
matthiasm@0 507
matthiasm@0 508 size_t
matthiasm@0 509 NNLSChroma::getMinChannelCount() const
matthiasm@0 510 {
matthiasm@0 511 if (debug_on) cerr << "--> getMinChannelCount" << endl;
matthiasm@0 512 return 1;
matthiasm@0 513 }
matthiasm@0 514
matthiasm@0 515 size_t
matthiasm@0 516 NNLSChroma::getMaxChannelCount() const
matthiasm@0 517 {
matthiasm@0 518 if (debug_on) cerr << "--> getMaxChannelCount" << endl;
matthiasm@0 519 return 1;
matthiasm@0 520 }
matthiasm@0 521
matthiasm@0 522 NNLSChroma::ParameterList
matthiasm@0 523 NNLSChroma::getParameterDescriptors() const
matthiasm@0 524 {
matthiasm@0 525 if (debug_on) cerr << "--> getParameterDescriptors" << endl;
matthiasm@0 526 ParameterList list;
matthiasm@0 527
matthiasm@3 528 ParameterDescriptor d3;
matthiasm@3 529 d3.identifier = "preset";
matthiasm@3 530 d3.name = "preset";
matthiasm@3 531 d3.description = "Spectral paling: no paling - 0; whitening - 1.";
matthiasm@3 532 d3.unit = "";
matthiasm@3 533 d3.isQuantized = true;
matthiasm@3 534 d3.quantizeStep = 1;
matthiasm@3 535 d3.minValue = 0.0;
matthiasm@4 536 d3.maxValue = 3.0;
matthiasm@3 537 d3.defaultValue = 0.0;
matthiasm@3 538 d3.valueNames.push_back("polyphonic pop");
matthiasm@3 539 d3.valueNames.push_back("polyphonic pop (fast)");
matthiasm@3 540 d3.valueNames.push_back("solo keyboard");
matthiasm@3 541 d3.valueNames.push_back("manual");
matthiasm@3 542 list.push_back(d3);
matthiasm@4 543
matthiasm@17 544 ParameterDescriptor d5;
matthiasm@17 545 d5.identifier = "rollon";
matthiasm@17 546 d5.name = "spectral roll-on";
matthiasm@17 547 d5.description = "The bins below the spectral roll-on quantile will be set to 0.";
matthiasm@17 548 d5.unit = "";
matthiasm@17 549 d5.minValue = 0;
matthiasm@17 550 d5.maxValue = 1;
matthiasm@17 551 d5.defaultValue = 0;
matthiasm@17 552 d5.isQuantized = false;
matthiasm@17 553 list.push_back(d5);
matthiasm@17 554
matthiasm@4 555 // ParameterDescriptor d0;
matthiasm@4 556 // d0.identifier = "notedict";
matthiasm@4 557 // d0.name = "note dictionary";
matthiasm@4 558 // d0.description = "Notes in different note dictionaries differ by their spectral shapes.";
matthiasm@4 559 // d0.unit = "";
matthiasm@4 560 // d0.minValue = 0;
matthiasm@4 561 // d0.maxValue = 1;
matthiasm@4 562 // d0.defaultValue = 0;
matthiasm@4 563 // d0.isQuantized = true;
matthiasm@4 564 // d0.valueNames.push_back("s = 0.6");
matthiasm@4 565 // d0.valueNames.push_back("no NNLS");
matthiasm@4 566 // d0.quantizeStep = 1.0;
matthiasm@4 567 // list.push_back(d0);
matthiasm@4 568
matthiasm@4 569 ParameterDescriptor d1;
matthiasm@4 570 d1.identifier = "tuningmode";
matthiasm@4 571 d1.name = "tuning mode";
matthiasm@4 572 d1.description = "Tuning can be performed locally or on the whole extraction segment. Local tuning is only advisable when the tuning is likely to change over the audio, for example in podcasts, or in a cappella singing.";
matthiasm@4 573 d1.unit = "";
matthiasm@4 574 d1.minValue = 0;
matthiasm@4 575 d1.maxValue = 1;
matthiasm@4 576 d1.defaultValue = 0;
matthiasm@4 577 d1.isQuantized = true;
matthiasm@4 578 d1.valueNames.push_back("global tuning");
matthiasm@4 579 d1.valueNames.push_back("local tuning");
matthiasm@4 580 d1.quantizeStep = 1.0;
matthiasm@4 581 list.push_back(d1);
matthiasm@4 582
matthiasm@4 583 // ParameterDescriptor d2;
matthiasm@4 584 // d2.identifier = "paling";
matthiasm@4 585 // d2.name = "spectral paling";
matthiasm@4 586 // d2.description = "Spectral paling: no paling - 0; whitening - 1.";
matthiasm@4 587 // d2.unit = "";
matthiasm@4 588 // d2.isQuantized = true;
matthiasm@4 589 // // d2.quantizeStep = 0.1;
matthiasm@4 590 // d2.minValue = 0.0;
matthiasm@4 591 // d2.maxValue = 1.0;
matthiasm@4 592 // d2.defaultValue = 1.0;
matthiasm@4 593 // d2.isQuantized = false;
matthiasm@4 594 // list.push_back(d2);
matthiasm@12 595 ParameterDescriptor d4;
matthiasm@12 596 d4.identifier = "chromanormalize";
matthiasm@12 597 d4.name = "chroma normalization";
matthiasm@12 598 d4.description = "How shall the chroma vector be normalized?";
matthiasm@12 599 d4.unit = "";
matthiasm@12 600 d4.minValue = 0;
matthiasm@13 601 d4.maxValue = 3;
matthiasm@12 602 d4.defaultValue = 0;
matthiasm@12 603 d4.isQuantized = true;
matthiasm@13 604 d4.valueNames.push_back("none");
matthiasm@13 605 d4.valueNames.push_back("maximum norm");
matthiasm@13 606 d4.valueNames.push_back("L1 norm");
matthiasm@13 607 d4.valueNames.push_back("L2 norm");
matthiasm@12 608 d4.quantizeStep = 1.0;
matthiasm@12 609 list.push_back(d4);
matthiasm@4 610
matthiasm@0 611 return list;
matthiasm@0 612 }
matthiasm@0 613
matthiasm@0 614 float
matthiasm@0 615 NNLSChroma::getParameter(string identifier) const
matthiasm@0 616 {
matthiasm@3 617 if (debug_on) cerr << "--> getParameter" << endl;
matthiasm@0 618 if (identifier == "notedict") {
matthiasm@0 619 return m_dictID;
matthiasm@0 620 }
matthiasm@0 621
matthiasm@0 622 if (identifier == "paling") {
matthiasm@0 623 return m_paling;
matthiasm@0 624 }
matthiasm@17 625
matthiasm@17 626 if (identifier == "rollon") {
matthiasm@17 627 return m_rollon;
matthiasm@17 628 }
matthiasm@0 629
matthiasm@0 630 if (identifier == "tuningmode") {
matthiasm@0 631 if (m_tuneLocal) {
matthiasm@0 632 return 1.0;
matthiasm@0 633 } else {
matthiasm@0 634 return 0.0;
matthiasm@0 635 }
matthiasm@0 636 }
matthiasm@3 637 if (identifier == "preset") {
matthiasm@3 638 return m_preset;
matthiasm@3 639 }
matthiasm@12 640 if (identifier == "chromanormalize") {
matthiasm@12 641 return m_doNormalizeChroma;
matthiasm@12 642 }
matthiasm@0 643 return 0;
matthiasm@0 644
matthiasm@0 645 }
matthiasm@0 646
matthiasm@0 647 void
matthiasm@0 648 NNLSChroma::setParameter(string identifier, float value)
matthiasm@0 649 {
matthiasm@3 650 if (debug_on) cerr << "--> setParameter" << endl;
matthiasm@0 651 if (identifier == "notedict") {
matthiasm@0 652 m_dictID = (int) value;
matthiasm@0 653 }
matthiasm@0 654
matthiasm@0 655 if (identifier == "paling") {
matthiasm@0 656 m_paling = value;
matthiasm@0 657 }
matthiasm@0 658
matthiasm@0 659 if (identifier == "tuningmode") {
matthiasm@0 660 m_tuneLocal = (value > 0) ? true : false;
matthiasm@0 661 // cerr << "m_tuneLocal :" << m_tuneLocal << endl;
matthiasm@0 662 }
matthiasm@3 663 if (identifier == "preset") {
matthiasm@3 664 m_preset = value;
matthiasm@3 665 if (m_preset == 0.0) {
matthiasm@3 666 m_tuneLocal = false;
matthiasm@3 667 m_paling = 1.0;
matthiasm@3 668 m_dictID = 0.0;
matthiasm@3 669 }
matthiasm@3 670 if (m_preset == 1.0) {
matthiasm@3 671 m_tuneLocal = false;
matthiasm@3 672 m_paling = 1.0;
matthiasm@3 673 m_dictID = 1.0;
matthiasm@3 674 }
matthiasm@3 675 if (m_preset == 2.0) {
matthiasm@3 676 m_tuneLocal = false;
matthiasm@3 677 m_paling = 0.7;
matthiasm@3 678 m_dictID = 0.0;
matthiasm@3 679 }
matthiasm@3 680 }
matthiasm@12 681 if (identifier == "chromanormalize") {
matthiasm@12 682 m_doNormalizeChroma = value;
matthiasm@12 683 }
matthiasm@17 684
matthiasm@17 685 if (identifier == "rollon") {
matthiasm@17 686 m_rollon = value;
matthiasm@17 687 }
matthiasm@0 688 }
matthiasm@0 689
matthiasm@0 690 NNLSChroma::ProgramList
matthiasm@0 691 NNLSChroma::getPrograms() const
matthiasm@0 692 {
matthiasm@0 693 if (debug_on) cerr << "--> getPrograms" << endl;
matthiasm@0 694 ProgramList list;
matthiasm@0 695
matthiasm@0 696 // If you have no programs, return an empty list (or simply don't
matthiasm@0 697 // implement this function or getCurrentProgram/selectProgram)
matthiasm@0 698
matthiasm@0 699 return list;
matthiasm@0 700 }
matthiasm@0 701
matthiasm@0 702 string
matthiasm@0 703 NNLSChroma::getCurrentProgram() const
matthiasm@0 704 {
matthiasm@0 705 if (debug_on) cerr << "--> getCurrentProgram" << endl;
matthiasm@0 706 return ""; // no programs
matthiasm@0 707 }
matthiasm@0 708
matthiasm@0 709 void
matthiasm@0 710 NNLSChroma::selectProgram(string name)
matthiasm@0 711 {
matthiasm@0 712 if (debug_on) cerr << "--> selectProgram" << endl;
matthiasm@0 713 }
matthiasm@0 714
matthiasm@0 715
matthiasm@0 716 NNLSChroma::OutputList
matthiasm@0 717 NNLSChroma::getOutputDescriptors() const
matthiasm@0 718 {
matthiasm@0 719 if (debug_on) cerr << "--> getOutputDescriptors" << endl;
matthiasm@0 720 OutputList list;
matthiasm@0 721
matthiasm@0 722 // Make chroma names for the binNames property
matthiasm@0 723 vector<string> chromanames;
matthiasm@0 724 vector<string> bothchromanames;
matthiasm@0 725 for (int iNote = 0; iNote < 24; iNote++) {
matthiasm@0 726 bothchromanames.push_back(notenames[iNote]);
matthiasm@0 727 if (iNote < 12) {
matthiasm@0 728 chromanames.push_back(notenames[iNote]);
matthiasm@0 729 }
matthiasm@0 730 }
matthiasm@0 731
matthiasm@1 732 // int nNote = 84;
matthiasm@0 733
matthiasm@0 734 // See OutputDescriptor documentation for the possibilities here.
matthiasm@0 735 // Every plugin must have at least one output.
matthiasm@0 736
matthiasm@0 737 OutputDescriptor d0;
matthiasm@0 738 d0.identifier = "tuning";
matthiasm@0 739 d0.name = "Tuning";
matthiasm@0 740 d0.description = "The concert pitch.";
matthiasm@0 741 d0.unit = "Hz";
matthiasm@0 742 d0.hasFixedBinCount = true;
matthiasm@0 743 d0.binCount = 0;
matthiasm@0 744 d0.hasKnownExtents = true;
matthiasm@0 745 d0.minValue = 427.47;
matthiasm@0 746 d0.maxValue = 452.89;
matthiasm@0 747 d0.isQuantized = false;
matthiasm@0 748 d0.sampleType = OutputDescriptor::VariableSampleRate;
matthiasm@0 749 d0.hasDuration = false;
matthiasm@0 750 list.push_back(d0);
matthiasm@0 751
matthiasm@0 752 OutputDescriptor d1;
matthiasm@0 753 d1.identifier = "logfreqspec";
matthiasm@0 754 d1.name = "Log-Frequency Spectrum";
matthiasm@0 755 d1.description = "A Log-Frequency Spectrum (constant Q) that is obtained by cosine filter mapping.";
matthiasm@0 756 d1.unit = "";
matthiasm@0 757 d1.hasFixedBinCount = true;
matthiasm@0 758 d1.binCount = nNote;
matthiasm@0 759 d1.hasKnownExtents = false;
matthiasm@0 760 d1.isQuantized = false;
matthiasm@0 761 d1.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 762 d1.hasDuration = false;
matthiasm@0 763 d1.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 764 list.push_back(d1);
matthiasm@0 765
matthiasm@0 766 OutputDescriptor d2;
matthiasm@0 767 d2.identifier = "tunedlogfreqspec";
matthiasm@0 768 d2.name = "Tuned Log-Frequency Spectrum";
matthiasm@0 769 d2.description = "A Log-Frequency Spectrum (constant Q) that is obtained by cosine filter mapping, then its tuned using the estimated tuning frequency.";
matthiasm@0 770 d2.unit = "";
matthiasm@0 771 d2.hasFixedBinCount = true;
matthiasm@0 772 d2.binCount = 256;
matthiasm@0 773 d2.hasKnownExtents = false;
matthiasm@0 774 d2.isQuantized = false;
matthiasm@0 775 d2.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 776 d2.hasDuration = false;
matthiasm@0 777 d2.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 778 list.push_back(d2);
matthiasm@0 779
matthiasm@0 780 OutputDescriptor d3;
matthiasm@0 781 d3.identifier = "semitonespectrum";
matthiasm@0 782 d3.name = "Semitone Spectrum";
matthiasm@0 783 d3.description = "A semitone-spaced log-frequency spectrum derived from the third-of-a-semitone-spaced tuned log-frequency spectrum.";
matthiasm@0 784 d3.unit = "";
matthiasm@0 785 d3.hasFixedBinCount = true;
matthiasm@0 786 d3.binCount = 84;
matthiasm@0 787 d3.hasKnownExtents = false;
matthiasm@0 788 d3.isQuantized = false;
matthiasm@0 789 d3.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 790 d3.hasDuration = false;
matthiasm@0 791 d3.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 792 list.push_back(d3);
matthiasm@0 793
matthiasm@0 794 OutputDescriptor d4;
matthiasm@0 795 d4.identifier = "chroma";
matthiasm@0 796 d4.name = "Chromagram";
matthiasm@0 797 d4.description = "Tuning-adjusted chromagram from NNLS soft transcription, with an emphasis on the medium note range.";
matthiasm@0 798 d4.unit = "";
matthiasm@0 799 d4.hasFixedBinCount = true;
matthiasm@0 800 d4.binCount = 12;
matthiasm@0 801 d4.binNames = chromanames;
matthiasm@0 802 d4.hasKnownExtents = false;
matthiasm@0 803 d4.isQuantized = false;
matthiasm@0 804 d4.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 805 d4.hasDuration = false;
matthiasm@0 806 d4.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 807 list.push_back(d4);
matthiasm@0 808
matthiasm@0 809 OutputDescriptor d5;
matthiasm@0 810 d5.identifier = "basschroma";
matthiasm@0 811 d5.name = "Bass Chromagram";
matthiasm@0 812 d5.description = "Tuning-adjusted bass chromagram from NNLS soft transcription, with an emphasis on the bass note range.";
matthiasm@0 813 d5.unit = "";
matthiasm@0 814 d5.hasFixedBinCount = true;
matthiasm@0 815 d5.binCount = 12;
matthiasm@0 816 d5.binNames = chromanames;
matthiasm@0 817 d5.hasKnownExtents = false;
matthiasm@0 818 d5.isQuantized = false;
matthiasm@0 819 d5.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 820 d5.hasDuration = false;
matthiasm@0 821 d5.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 822 list.push_back(d5);
matthiasm@0 823
matthiasm@0 824 OutputDescriptor d6;
matthiasm@0 825 d6.identifier = "bothchroma";
matthiasm@0 826 d6.name = "Chromagram and Bass Chromagram";
matthiasm@0 827 d6.description = "Tuning-adjusted chromagram and bass chromagram (stacked on top of each other) from NNLS soft transcription.";
matthiasm@0 828 d6.unit = "";
matthiasm@0 829 d6.hasFixedBinCount = true;
matthiasm@0 830 d6.binCount = 24;
matthiasm@0 831 d6.binNames = bothchromanames;
matthiasm@0 832 d6.hasKnownExtents = false;
matthiasm@0 833 d6.isQuantized = false;
matthiasm@0 834 d6.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@0 835 d6.hasDuration = false;
matthiasm@0 836 d6.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 837 list.push_back(d6);
matthiasm@0 838
matthiasm@0 839 OutputDescriptor d7;
matthiasm@0 840 d7.identifier = "simplechord";
matthiasm@0 841 d7.name = "Simple Chord Estimate";
matthiasm@0 842 d7.description = "A simple chord estimate based on the inner product of chord templates with the smoothed chroma.";
matthiasm@0 843 d7.unit = "";
matthiasm@0 844 d7.hasFixedBinCount = true;
matthiasm@0 845 d7.binCount = 0;
matthiasm@0 846 d7.hasKnownExtents = false;
matthiasm@0 847 d7.isQuantized = false;
matthiasm@0 848 d7.sampleType = OutputDescriptor::VariableSampleRate;
matthiasm@0 849 d7.hasDuration = false;
matthiasm@0 850 d7.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 851 list.push_back(d7);
matthiasm@0 852
matthiasm@1 853 //
matthiasm@1 854 // OutputDescriptor d9;
matthiasm@1 855 // d9.identifier = "inconsistencysegment";
matthiasm@1 856 // d9.name = "Harmonic inconsistency segmenter";
matthiasm@1 857 // d9.description = "Segments the audio based on the harmonic inconsistency value into speech and music.";
matthiasm@1 858 // d9.unit = "";
matthiasm@1 859 // d9.hasFixedBinCount = true;
matthiasm@1 860 // d9.binCount = 0;
matthiasm@1 861 // d9.hasKnownExtents = true;
matthiasm@1 862 // d9.minValue = 0.1;
matthiasm@1 863 // d9.maxValue = 0.9;
matthiasm@1 864 // d9.isQuantized = false;
matthiasm@1 865 // d9.sampleType = OutputDescriptor::VariableSampleRate;
matthiasm@1 866 // d9.hasDuration = false;
matthiasm@1 867 // d9.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@1 868 // list.push_back(d9);
matthiasm@1 869 //
matthiasm@1 870 OutputDescriptor d10;
matthiasm@17 871 d10.identifier = "localtuning";
matthiasm@17 872 d10.name = "Local tuning";
matthiasm@17 873 d10.description = "Tuning based on the history up to this timestamp.";
matthiasm@17 874 d10.unit = "Hz";
matthiasm@17 875 d10.hasFixedBinCount = true;
matthiasm@17 876 d10.binCount = 1;
matthiasm@17 877 d10.hasKnownExtents = true;
matthiasm@17 878 d10.minValue = 427.47;
matthiasm@17 879 d10.maxValue = 452.89;
matthiasm@17 880 d10.isQuantized = false;
matthiasm@17 881 d10.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@17 882 d10.hasDuration = false;
matthiasm@17 883 // d10.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@17 884 list.push_back(d10);
matthiasm@17 885
matthiasm@17 886 OutputDescriptor d8;
matthiasm@17 887 d8.identifier = "harmonicchange";
matthiasm@17 888 d8.name = "Harmonic change value";
matthiasm@17 889 d8.description = "Harmonic change.";
matthiasm@17 890 d8.unit = "";
matthiasm@17 891 d8.hasFixedBinCount = true;
matthiasm@17 892 d8.binCount = 1;
matthiasm@17 893 d8.hasKnownExtents = true;
matthiasm@17 894 d8.minValue = 0.0;
matthiasm@17 895 d8.maxValue = 0.999;
matthiasm@17 896 d8.isQuantized = false;
matthiasm@17 897 d8.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@17 898 d8.hasDuration = false;
matthiasm@17 899 // d8.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@17 900 list.push_back(d8);
matthiasm@1 901
matthiasm@0 902 return list;
matthiasm@0 903 }
matthiasm@0 904
matthiasm@0 905
matthiasm@0 906 bool
matthiasm@0 907 NNLSChroma::initialise(size_t channels, size_t stepSize, size_t blockSize)
matthiasm@0 908 {
matthiasm@1 909 if (debug_on) {
matthiasm@1 910 cerr << "--> initialise";
matthiasm@1 911 }
matthiasm@1 912
matthiasm@0 913 if (channels < getMinChannelCount() ||
matthiasm@0 914 channels > getMaxChannelCount()) return false;
matthiasm@0 915 m_blockSize = blockSize;
matthiasm@0 916 m_stepSize = stepSize;
matthiasm@0 917 frameCount = 0;
matthiasm@0 918 int tempn = 256 * m_blockSize/2;
matthiasm@4 919 // cerr << "length of tempkernel : " << tempn << endl;
matthiasm@1 920 float *tempkernel;
matthiasm@1 921
matthiasm@1 922 tempkernel = new float[tempn];
matthiasm@1 923
matthiasm@0 924 logFreqMatrix(m_inputSampleRate, m_blockSize, tempkernel);
matthiasm@1 925 m_kernelValue.clear();
matthiasm@1 926 m_kernelFftIndex.clear();
matthiasm@1 927 m_kernelNoteIndex.clear();
matthiasm@1 928 int countNonzero = 0;
matthiasm@0 929 for (unsigned iNote = 0; iNote < nNote; ++iNote) { // I don't know if this is wise: manually making a sparse matrix
matthiasm@1 930 for (unsigned iFFT = 0; iFFT < blockSize/2; ++iFFT) {
matthiasm@1 931 if (tempkernel[iFFT + blockSize/2 * iNote] > 0) {
matthiasm@1 932 m_kernelValue.push_back(tempkernel[iFFT + blockSize/2 * iNote]);
matthiasm@0 933 if (tempkernel[iFFT + blockSize/2 * iNote] > 0) {
matthiasm@1 934 countNonzero++;
matthiasm@0 935 }
matthiasm@1 936 m_kernelFftIndex.push_back(iFFT);
matthiasm@1 937 m_kernelNoteIndex.push_back(iNote);
matthiasm@0 938 }
matthiasm@0 939 }
matthiasm@1 940 }
matthiasm@4 941 // cerr << "nonzero count : " << countNonzero << endl;
matthiasm@1 942 delete [] tempkernel;
matthiasm@3 943 ofstream myfile;
matthiasm@3 944 myfile.open ("matrix.txt");
matthiasm@3 945 // myfile << "Writing this to a file.\n";
matthiasm@3 946 for (int i = 0; i < nNote * 84; ++i) {
matthiasm@3 947 myfile << m_dict[i] << endl;
matthiasm@3 948 }
matthiasm@3 949 myfile.close();
matthiasm@0 950 return true;
matthiasm@0 951 }
matthiasm@0 952
matthiasm@0 953 void
matthiasm@0 954 NNLSChroma::reset()
matthiasm@0 955 {
matthiasm@4 956 if (debug_on) cerr << "--> reset";
matthiasm@4 957
matthiasm@0 958 // Clear buffers, reset stored values, etc
matthiasm@4 959 frameCount = 0;
matthiasm@4 960 m_dictID = 0;
matthiasm@4 961 m_fl.clear();
matthiasm@4 962 m_meanTuning0 = 0;
matthiasm@4 963 m_meanTuning1 = 0;
matthiasm@4 964 m_meanTuning2 = 0;
matthiasm@4 965 m_localTuning0 = 0;
matthiasm@4 966 m_localTuning1 = 0;
matthiasm@4 967 m_localTuning2 = 0;
matthiasm@4 968 m_localTuning.clear();
matthiasm@0 969 }
matthiasm@0 970
matthiasm@0 971 NNLSChroma::FeatureSet
matthiasm@0 972 NNLSChroma::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
matthiasm@0 973 {
matthiasm@4 974 if (debug_on) cerr << "--> process" << endl;
matthiasm@0 975 frameCount++;
matthiasm@0 976 float *magnitude = new float[m_blockSize/2];
matthiasm@0 977
matthiasm@0 978 Feature f10; // local tuning
matthiasm@3 979 f10.hasTimestamp = true;
matthiasm@4 980 f10.timestamp = timestamp;
matthiasm@0 981 const float *fbuf = inputBuffers[0];
matthiasm@17 982 float energysum = 0;
matthiasm@0 983 // make magnitude
matthiasm@14 984 float maxmag = -10000;
matthiasm@0 985 for (size_t iBin = 0; iBin < m_blockSize/2; iBin++) {
matthiasm@0 986 magnitude[iBin] = sqrt(fbuf[2 * iBin] * fbuf[2 * iBin] +
matthiasm@14 987 fbuf[2 * iBin + 1] * fbuf[2 * iBin + 1]);
matthiasm@14 988 if (maxmag < magnitude[iBin]) maxmag = magnitude[iBin];
matthiasm@17 989 if (m_rollon > 0) {
matthiasm@17 990 energysum += pow(magnitude[iBin],2);
matthiasm@17 991 }
matthiasm@14 992 }
matthiasm@14 993
matthiasm@17 994 float cumenergy = 0;
matthiasm@17 995 if (m_rollon > 0) {
matthiasm@17 996 for (size_t iBin = 2; iBin < m_blockSize/2; iBin++) {
matthiasm@17 997 cumenergy += pow(magnitude[iBin],2);
matthiasm@17 998 if (cumenergy < energysum * m_rollon) magnitude[iBin-2] = 0;
matthiasm@17 999 else break;
matthiasm@17 1000 }
matthiasm@17 1001 }
matthiasm@17 1002
matthiasm@17 1003 if (maxmag < 2) {
matthiasm@14 1004 // cerr << "timestamp " << timestamp << ": very low magnitude, setting magnitude to all zeros" << endl;
matthiasm@14 1005 for (size_t iBin = 0; iBin < m_blockSize/2; iBin++) {
matthiasm@14 1006 magnitude[iBin] = 0;
matthiasm@14 1007 }
matthiasm@0 1008 }
matthiasm@4 1009
matthiasm@0 1010 // note magnitude mapping using pre-calculated matrix
matthiasm@0 1011 float *nm = new float[nNote]; // note magnitude
matthiasm@0 1012 for (size_t iNote = 0; iNote < nNote; iNote++) {
matthiasm@0 1013 nm[iNote] = 0; // initialise as 0
matthiasm@0 1014 }
matthiasm@0 1015 int binCount = 0;
matthiasm@0 1016 for (vector<float>::iterator it = m_kernelValue.begin(); it != m_kernelValue.end(); ++it) {
matthiasm@0 1017 // cerr << ".";
matthiasm@1 1018 nm[m_kernelNoteIndex[binCount]] += magnitude[m_kernelFftIndex[binCount]] * m_kernelValue[binCount];
matthiasm@1 1019 // cerr << m_kernelFftIndex[binCount] << " -- " << magnitude[m_kernelFftIndex[binCount]] << " -- "<< m_kernelValue[binCount] << endl;
matthiasm@0 1020 binCount++;
matthiasm@0 1021 }
matthiasm@1 1022 // cerr << nm[20];
matthiasm@1 1023 // cerr << endl;
matthiasm@0 1024
matthiasm@0 1025
matthiasm@0 1026 float one_over_N = 1.0/frameCount;
matthiasm@0 1027 // update means of complex tuning variables
matthiasm@0 1028 m_meanTuning0 *= float(frameCount-1)*one_over_N;
matthiasm@0 1029 m_meanTuning1 *= float(frameCount-1)*one_over_N;
matthiasm@0 1030 m_meanTuning2 *= float(frameCount-1)*one_over_N;
matthiasm@0 1031
matthiasm@0 1032 for (int iTone = 0; iTone < 160; iTone = iTone + 3) {
matthiasm@0 1033 m_meanTuning0 += nm[iTone + 0]*one_over_N;
matthiasm@0 1034 m_meanTuning1 += nm[iTone + 1]*one_over_N;
matthiasm@0 1035 m_meanTuning2 += nm[iTone + 2]*one_over_N;
matthiasm@3 1036 float ratioOld = 0.997;
matthiasm@3 1037 m_localTuning0 *= ratioOld; m_localTuning0 += nm[iTone + 0] * (1 - ratioOld);
matthiasm@3 1038 m_localTuning1 *= ratioOld; m_localTuning1 += nm[iTone + 1] * (1 - ratioOld);
matthiasm@3 1039 m_localTuning2 *= ratioOld; m_localTuning2 += nm[iTone + 2] * (1 - ratioOld);
matthiasm@0 1040 }
matthiasm@0 1041
matthiasm@0 1042 // if (m_tuneLocal) {
matthiasm@0 1043 // local tuning
matthiasm@0 1044 float localTuningImag = sinvalue * m_localTuning1 - sinvalue * m_localTuning2;
matthiasm@0 1045 float localTuningReal = m_localTuning0 + cosvalue * m_localTuning1 + cosvalue * m_localTuning2;
matthiasm@0 1046 float normalisedtuning = atan2(localTuningImag, localTuningReal)/(2*M_PI);
matthiasm@0 1047 m_localTuning.push_back(normalisedtuning);
matthiasm@0 1048 float tuning440 = 440 * pow(2,normalisedtuning/12);
matthiasm@0 1049 f10.values.push_back(tuning440);
matthiasm@3 1050 // cerr << tuning440 << endl;
matthiasm@0 1051 // }
matthiasm@0 1052
matthiasm@0 1053 Feature f1; // logfreqspec
matthiasm@0 1054 f1.hasTimestamp = true;
matthiasm@0 1055 f1.timestamp = timestamp;
matthiasm@0 1056 for (size_t iNote = 0; iNote < nNote; iNote++) {
matthiasm@0 1057 f1.values.push_back(nm[iNote]);
matthiasm@0 1058 }
matthiasm@0 1059
matthiasm@0 1060 FeatureSet fs;
matthiasm@0 1061 fs[1].push_back(f1);
matthiasm@3 1062 fs[8].push_back(f10);
matthiasm@0 1063
matthiasm@0 1064 // deletes
matthiasm@0 1065 delete[] magnitude;
matthiasm@0 1066 delete[] nm;
matthiasm@0 1067
matthiasm@0 1068 m_fl.push_back(f1); // remember note magnitude for getRemainingFeatures
matthiasm@7 1069 char * pPath;
matthiasm@7 1070 pPath = getenv ("VAMP_PATH");
matthiasm@7 1071
matthiasm@7 1072
matthiasm@0 1073 return fs;
matthiasm@0 1074 }
matthiasm@0 1075
matthiasm@0 1076 NNLSChroma::FeatureSet
matthiasm@0 1077 NNLSChroma::getRemainingFeatures()
matthiasm@0 1078 {
matthiasm@4 1079 if (debug_on) cerr << "--> getRemainingFeatures" << endl;
matthiasm@4 1080 FeatureSet fsOut;
matthiasm@4 1081 if (m_fl.size() == 0) return fsOut;
matthiasm@9 1082 int nChord = m_chordnames.size();
matthiasm@0 1083 //
matthiasm@1 1084 /** Calculate Tuning
matthiasm@1 1085 calculate tuning from (using the angle of the complex number defined by the
matthiasm@1 1086 cumulative mean real and imag values)
matthiasm@1 1087 **/
matthiasm@1 1088 float meanTuningImag = sinvalue * m_meanTuning1 - sinvalue * m_meanTuning2;
matthiasm@1 1089 float meanTuningReal = m_meanTuning0 + cosvalue * m_meanTuning1 + cosvalue * m_meanTuning2;
matthiasm@1 1090 float cumulativetuning = 440 * pow(2,atan2(meanTuningImag, meanTuningReal)/(24*M_PI));
matthiasm@1 1091 float normalisedtuning = atan2(meanTuningImag, meanTuningReal)/(2*M_PI);
matthiasm@1 1092 int intShift = floor(normalisedtuning * 3);
matthiasm@1 1093 float intFactor = normalisedtuning * 3 - intShift; // intFactor is a really bad name for this
matthiasm@1 1094
matthiasm@1 1095 char buffer0 [50];
matthiasm@1 1096
matthiasm@1 1097 sprintf(buffer0, "estimated tuning: %0.1f Hz", cumulativetuning);
matthiasm@1 1098
matthiasm@1 1099 // cerr << "normalisedtuning: " << normalisedtuning << '\n';
matthiasm@1 1100
matthiasm@1 1101 // push tuning to FeatureSet fsOut
matthiasm@1 1102 Feature f0; // tuning
matthiasm@1 1103 f0.hasTimestamp = true;
matthiasm@1 1104 f0.timestamp = Vamp::RealTime::frame2RealTime(0, lrintf(m_inputSampleRate));;
matthiasm@1 1105 f0.label = buffer0;
matthiasm@1 1106 fsOut[0].push_back(f0);
matthiasm@1 1107
matthiasm@1 1108 /** Tune Log-Frequency Spectrogram
matthiasm@1 1109 calculate a tuned log-frequency spectrogram (f2): use the tuning estimated above (kinda f0) to
matthiasm@1 1110 perform linear interpolation on the existing log-frequency spectrogram (kinda f1).
matthiasm@13 1111 **/
matthiasm@17 1112 cerr << endl << "[NNLS Chroma Plugin] Tuning Log-Frequency Spectrogram ... ";
matthiasm@13 1113
matthiasm@1 1114 float tempValue = 0;
matthiasm@1 1115 float dbThreshold = 0; // relative to the background spectrum
matthiasm@1 1116 float thresh = pow(10,dbThreshold/20);
matthiasm@1 1117 // cerr << "tune local ? " << m_tuneLocal << endl;
matthiasm@1 1118 int count = 0;
matthiasm@1 1119
matthiasm@1 1120 for (FeatureList::iterator i = m_fl.begin(); i != m_fl.end(); ++i) {
matthiasm@1 1121 Feature f1 = *i;
matthiasm@1 1122 Feature f2; // tuned log-frequency spectrum
matthiasm@1 1123 f2.hasTimestamp = true;
matthiasm@1 1124 f2.timestamp = f1.timestamp;
matthiasm@1 1125 f2.values.push_back(0.0); f2.values.push_back(0.0); // set lower edge to zero
matthiasm@1 1126
matthiasm@1 1127 if (m_tuneLocal) {
matthiasm@1 1128 intShift = floor(m_localTuning[count] * 3);
matthiasm@1 1129 intFactor = m_localTuning[count] * 3 - intShift; // intFactor is a really bad name for this
matthiasm@1 1130 }
matthiasm@1 1131
matthiasm@1 1132 // cerr << intShift << " " << intFactor << endl;
matthiasm@1 1133
matthiasm@4 1134 for (unsigned k = 2; k < f1.values.size() - 3; ++k) { // interpolate all inner bins
matthiasm@1 1135 tempValue = f1.values[k + intShift] * (1-intFactor) + f1.values[k+intShift+1] * intFactor;
matthiasm@1 1136 f2.values.push_back(tempValue);
matthiasm@1 1137 }
matthiasm@1 1138
matthiasm@1 1139 f2.values.push_back(0.0); f2.values.push_back(0.0); f2.values.push_back(0.0); // upper edge
matthiasm@1 1140 vector<float> runningmean = SpecialConvolution(f2.values,hw);
matthiasm@1 1141 vector<float> runningstd;
matthiasm@1 1142 for (int i = 0; i < 256; i++) { // first step: squared values into vector (variance)
matthiasm@1 1143 runningstd.push_back((f2.values[i] - runningmean[i]) * (f2.values[i] - runningmean[i]));
matthiasm@1 1144 }
matthiasm@1 1145 runningstd = SpecialConvolution(runningstd,hw); // second step convolve
matthiasm@1 1146 for (int i = 0; i < 256; i++) {
matthiasm@1 1147 runningstd[i] = sqrt(runningstd[i]); // square root to finally have running std
matthiasm@1 1148 if (runningstd[i] > 0) {
matthiasm@1 1149 // f2.values[i] = (f2.values[i] / runningmean[i]) > thresh ?
matthiasm@1 1150 // (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_paling) : 0;
matthiasm@1 1151 f2.values[i] = (f2.values[i] - runningmean[i]) > 0 ?
matthiasm@1 1152 (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_paling) : 0;
matthiasm@1 1153 }
matthiasm@1 1154 if (f2.values[i] < 0) {
matthiasm@1 1155 cerr << "ERROR: negative value in logfreq spectrum" << endl;
matthiasm@1 1156 }
matthiasm@1 1157 }
matthiasm@1 1158 fsOut[2].push_back(f2);
matthiasm@1 1159 count++;
matthiasm@1 1160 }
matthiasm@13 1161 cerr << "done." << endl;
matthiasm@1 1162
matthiasm@1 1163 /** Semitone spectrum and chromagrams
matthiasm@1 1164 Semitone-spaced log-frequency spectrum derived from the tuned log-freq spectrum above. the spectrum
matthiasm@1 1165 is inferred using a non-negative least squares algorithm.
matthiasm@1 1166 Three different kinds of chromagram are calculated, "treble", "bass", and "both" (which means
matthiasm@1 1167 bass and treble stacked onto each other).
matthiasm@1 1168 **/
matthiasm@13 1169 if (m_dictID == 1) {
matthiasm@13 1170 cerr << "[NNLS Chroma Plugin] Mapping to semitone spectrum and chroma ... ";
matthiasm@13 1171 } else {
matthiasm@13 1172 cerr << "[NNLS Chroma Plugin] Performing NNLS and mapping to chroma ... ";
matthiasm@13 1173 }
matthiasm@13 1174
matthiasm@1 1175
matthiasm@1 1176 vector<vector<float> > chordogram;
matthiasm@3 1177 vector<vector<int> > scoreChordogram;
matthiasm@17 1178 vector<float> chordchange = vector<float>(fsOut[2].size(),0);
matthiasm@1 1179 vector<float> oldchroma = vector<float>(12,0);
matthiasm@1 1180 vector<float> oldbasschroma = vector<float>(12,0);
matthiasm@1 1181 count = 0;
matthiasm@9 1182
matthiasm@1 1183 for (FeatureList::iterator it = fsOut[2].begin(); it != fsOut[2].end(); ++it) {
matthiasm@1 1184 Feature f2 = *it; // logfreq spectrum
matthiasm@1 1185 Feature f3; // semitone spectrum
matthiasm@1 1186 Feature f4; // treble chromagram
matthiasm@1 1187 Feature f5; // bass chromagram
matthiasm@1 1188 Feature f6; // treble and bass chromagram
matthiasm@1 1189
matthiasm@1 1190 f3.hasTimestamp = true;
matthiasm@1 1191 f3.timestamp = f2.timestamp;
matthiasm@1 1192
matthiasm@1 1193 f4.hasTimestamp = true;
matthiasm@1 1194 f4.timestamp = f2.timestamp;
matthiasm@1 1195
matthiasm@1 1196 f5.hasTimestamp = true;
matthiasm@1 1197 f5.timestamp = f2.timestamp;
matthiasm@1 1198
matthiasm@1 1199 f6.hasTimestamp = true;
matthiasm@1 1200 f6.timestamp = f2.timestamp;
matthiasm@1 1201
Chris@22 1202 double b[256];
matthiasm@1 1203
matthiasm@1 1204 bool some_b_greater_zero = false;
matthiasm@3 1205 float sumb = 0;
matthiasm@1 1206 for (int i = 0; i < 256; i++) {
matthiasm@3 1207 // b[i] = m_dict[(256 * count + i) % (256 * 84)];
matthiasm@3 1208 b[i] = f2.values[i];
matthiasm@3 1209 sumb += b[i];
matthiasm@1 1210 if (b[i] > 0) {
matthiasm@1 1211 some_b_greater_zero = true;
matthiasm@1 1212 }
matthiasm@1 1213 }
matthiasm@1 1214
matthiasm@1 1215 // here's where the non-negative least squares algorithm calculates the note activation x
matthiasm@1 1216
matthiasm@1 1217 vector<float> chroma = vector<float>(12, 0);
matthiasm@1 1218 vector<float> basschroma = vector<float>(12, 0);
matthiasm@1 1219 float currval;
matthiasm@1 1220 unsigned iSemitone = 0;
matthiasm@1 1221
matthiasm@1 1222 if (some_b_greater_zero) {
matthiasm@3 1223 if (m_dictID == 1) {
matthiasm@1 1224 for (unsigned iNote = 2; iNote < nNote - 2; iNote += 3) {
matthiasm@1 1225 currval = 0;
matthiasm@3 1226 currval += b[iNote + 1 + -1] * 0.5;
matthiasm@3 1227 currval += b[iNote + 1 + 0] * 1.0;
matthiasm@3 1228 currval += b[iNote + 1 + 1] * 0.5;
matthiasm@1 1229 f3.values.push_back(currval);
matthiasm@1 1230 chroma[iSemitone % 12] += currval * treblewindow[iSemitone];
matthiasm@1 1231 basschroma[iSemitone % 12] += currval * basswindow[iSemitone];
matthiasm@1 1232 iSemitone++;
matthiasm@1 1233 }
matthiasm@1 1234
matthiasm@1 1235 } else {
Chris@22 1236 double x[84+1000];
matthiasm@3 1237 for (int i = 1; i < 1084; ++i) x[i] = 1.0;
matthiasm@10 1238 vector<int> signifIndex;
matthiasm@10 1239 int index=0;
matthiasm@10 1240 sumb /= 84.0;
matthiasm@10 1241 for (unsigned iNote = 2; iNote < nNote - 2; iNote += 3) {
matthiasm@10 1242 float currval = 0;
matthiasm@10 1243 currval += b[iNote + 1 + -1];
matthiasm@10 1244 currval += b[iNote + 1 + 0];
matthiasm@10 1245 currval += b[iNote + 1 + 1];
matthiasm@10 1246 if (currval > 0) signifIndex.push_back(index);
matthiasm@10 1247 f3.values.push_back(0); // fill the values, change later
matthiasm@10 1248 index++;
matthiasm@10 1249 }
Chris@22 1250 double rnorm;
Chris@22 1251 double w[84+1000];
Chris@22 1252 double zz[84+1000];
matthiasm@3 1253 int indx[84+1000];
matthiasm@1 1254 int mode;
matthiasm@10 1255 int dictsize = 256*signifIndex.size();
matthiasm@10 1256 // cerr << "dictsize is " << dictsize << "and values size" << f3.values.size()<< endl;
Chris@22 1257 double *curr_dict = new double[dictsize];
matthiasm@10 1258 for (unsigned iNote = 0; iNote < signifIndex.size(); ++iNote) {
matthiasm@10 1259 for (unsigned iBin = 0; iBin < 256; iBin++) {
matthiasm@10 1260 curr_dict[iNote * 256 + iBin] = 1.0 * m_dict[signifIndex[iNote] * 256 + iBin];
matthiasm@10 1261 }
matthiasm@3 1262 }
Chris@22 1263 int sz = signifIndex.size();
Chris@22 1264 int nn = nNote;
Chris@22 1265 NNLS(curr_dict, &nn, &nn, &sz, b, x, &rnorm, w, zz, indx, &mode);
matthiasm@10 1266 delete [] curr_dict;
matthiasm@10 1267 for (unsigned iNote = 0; iNote < signifIndex.size(); ++iNote) {
matthiasm@10 1268 f3.values[signifIndex[iNote]] = x[iNote];
matthiasm@3 1269 // cerr << mode << endl;
matthiasm@10 1270 chroma[signifIndex[iNote] % 12] += x[iNote] * treblewindow[signifIndex[iNote]];
matthiasm@10 1271 basschroma[signifIndex[iNote] % 12] += x[iNote] * basswindow[signifIndex[iNote]];
matthiasm@3 1272 }
matthiasm@1 1273 }
matthiasm@1 1274 }
matthiasm@13 1275
matthiasm@10 1276
matthiasm@12 1277
matthiasm@13 1278
matthiasm@12 1279 f4.values = chroma;
matthiasm@1 1280 f5.values = basschroma;
matthiasm@1 1281 chroma.insert(chroma.begin(), basschroma.begin(), basschroma.end()); // just stack the both chromas
matthiasm@1 1282 f6.values = chroma;
matthiasm@1 1283
matthiasm@13 1284 if (m_doNormalizeChroma > 0) {
matthiasm@13 1285 vector<float> chromanorm = vector<float>(3,0);
matthiasm@13 1286 switch (int(m_doNormalizeChroma)) {
matthiasm@13 1287 case 0: // should never end up here
matthiasm@13 1288 break;
matthiasm@13 1289 case 1:
matthiasm@13 1290 chromanorm[0] = *max_element(f4.values.begin(), f4.values.end());
matthiasm@13 1291 chromanorm[1] = *max_element(f5.values.begin(), f5.values.end());
matthiasm@13 1292 chromanorm[2] = max(chromanorm[0], chromanorm[1]);
matthiasm@13 1293 break;
matthiasm@13 1294 case 2:
matthiasm@13 1295 for (vector<float>::iterator it = f4.values.begin(); it != f4.values.end(); ++it) {
matthiasm@13 1296 chromanorm[0] += *it;
matthiasm@13 1297 }
matthiasm@13 1298 for (vector<float>::iterator it = f5.values.begin(); it != f5.values.end(); ++it) {
matthiasm@13 1299 chromanorm[1] += *it;
matthiasm@13 1300 }
matthiasm@13 1301 for (vector<float>::iterator it = f6.values.begin(); it != f6.values.end(); ++it) {
matthiasm@13 1302 chromanorm[2] += *it;
matthiasm@13 1303 }
matthiasm@13 1304 break;
matthiasm@13 1305 case 3:
matthiasm@13 1306 for (vector<float>::iterator it = f4.values.begin(); it != f4.values.end(); ++it) {
matthiasm@13 1307 chromanorm[0] += pow(*it,2);
matthiasm@13 1308 }
matthiasm@13 1309 chromanorm[0] = sqrt(chromanorm[0]);
matthiasm@13 1310 for (vector<float>::iterator it = f5.values.begin(); it != f5.values.end(); ++it) {
matthiasm@13 1311 chromanorm[1] += pow(*it,2);
matthiasm@13 1312 }
matthiasm@13 1313 chromanorm[1] = sqrt(chromanorm[1]);
matthiasm@13 1314 for (vector<float>::iterator it = f6.values.begin(); it != f6.values.end(); ++it) {
matthiasm@13 1315 chromanorm[2] += pow(*it,2);
matthiasm@13 1316 }
matthiasm@13 1317 chromanorm[2] = sqrt(chromanorm[2]);
matthiasm@13 1318 break;
matthiasm@13 1319 }
matthiasm@13 1320 if (chromanorm[0] > 0) {
matthiasm@13 1321 for (int i = 0; i < f4.values.size(); i++) {
matthiasm@13 1322 f4.values[i] /= chromanorm[0];
matthiasm@13 1323 }
matthiasm@13 1324 }
matthiasm@13 1325 if (chromanorm[1] > 0) {
matthiasm@13 1326 for (int i = 0; i < f5.values.size(); i++) {
matthiasm@13 1327 f5.values[i] /= chromanorm[1];
matthiasm@13 1328 }
matthiasm@13 1329 }
matthiasm@13 1330 if (chromanorm[2] > 0) {
matthiasm@13 1331 for (int i = 0; i < f6.values.size(); i++) {
matthiasm@13 1332 f6.values[i] /= chromanorm[2];
matthiasm@13 1333 }
matthiasm@13 1334 }
matthiasm@13 1335
matthiasm@13 1336 }
matthiasm@13 1337
matthiasm@1 1338 // local chord estimation
matthiasm@1 1339 vector<float> currentChordSalience;
matthiasm@1 1340 float tempchordvalue = 0;
matthiasm@1 1341 float sumchordvalue = 0;
matthiasm@9 1342
matthiasm@1 1343 for (int iChord = 0; iChord < nChord; iChord++) {
matthiasm@1 1344 tempchordvalue = 0;
matthiasm@1 1345 for (int iBin = 0; iBin < 12; iBin++) {
matthiasm@9 1346 tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin];
matthiasm@1 1347 }
matthiasm@1 1348 for (int iBin = 12; iBin < 24; iBin++) {
matthiasm@9 1349 tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin];
matthiasm@1 1350 }
matthiasm@1 1351 sumchordvalue+=tempchordvalue;
matthiasm@1 1352 currentChordSalience.push_back(tempchordvalue);
matthiasm@1 1353 }
matthiasm@17 1354 if (sumchordvalue > 0) {
matthiasm@17 1355 for (int iChord = 0; iChord < nChord; iChord++) {
matthiasm@17 1356 currentChordSalience[iChord] /= sumchordvalue;
matthiasm@17 1357 }
matthiasm@17 1358 } else {
matthiasm@17 1359 currentChordSalience[nChord-1] = 1.0;
matthiasm@17 1360 }
matthiasm@1 1361 chordogram.push_back(currentChordSalience);
matthiasm@1 1362
matthiasm@1 1363 fsOut[3].push_back(f3);
matthiasm@1 1364 fsOut[4].push_back(f4);
matthiasm@1 1365 fsOut[5].push_back(f5);
matthiasm@1 1366 fsOut[6].push_back(f6);
matthiasm@1 1367 count++;
matthiasm@1 1368 }
matthiasm@13 1369 cerr << "done." << endl;
matthiasm@13 1370
matthiasm@10 1371
matthiasm@3 1372 /* Simple chord estimation
matthiasm@3 1373 I just take the local chord estimates ("currentChordSalience") and average them over time, then
matthiasm@3 1374 take the maximum. Very simple, don't do this at home...
matthiasm@3 1375 */
matthiasm@13 1376 cerr << "[NNLS Chroma Plugin] Chord Estimation ... ";
matthiasm@3 1377 count = 0;
matthiasm@3 1378 int halfwindowlength = m_inputSampleRate / m_stepSize;
matthiasm@3 1379 vector<int> chordSequence;
matthiasm@3 1380 for (FeatureList::iterator it = fsOut[6].begin(); it != fsOut[6].end(); ++it) { // initialise the score chordogram
matthiasm@3 1381 vector<int> temp = vector<int>(nChord,0);
matthiasm@3 1382 scoreChordogram.push_back(temp);
matthiasm@3 1383 }
matthiasm@4 1384 for (FeatureList::iterator it = fsOut[6].begin(); it < fsOut[6].end()-2*halfwindowlength-1; ++it) {
matthiasm@3 1385 int startIndex = count + 1;
matthiasm@3 1386 int endIndex = count + 2 * halfwindowlength;
matthiasm@10 1387
matthiasm@10 1388 float chordThreshold = 2.5/nChord;//*(2*halfwindowlength+1);
matthiasm@10 1389
matthiasm@10 1390 vector<int> chordCandidates;
matthiasm@10 1391 for (unsigned iChord = 0; iChord < nChord-1; iChord++) {
matthiasm@10 1392 // float currsum = 0;
matthiasm@10 1393 // for (unsigned iFrame = startIndex; iFrame < endIndex; ++iFrame) {
matthiasm@10 1394 // currsum += chordogram[iFrame][iChord];
matthiasm@10 1395 // }
matthiasm@10 1396 // if (currsum > chordThreshold) chordCandidates.push_back(iChord);
matthiasm@10 1397 for (unsigned iFrame = startIndex; iFrame < endIndex; ++iFrame) {
matthiasm@10 1398 if (chordogram[iFrame][iChord] > chordThreshold) {
matthiasm@10 1399 chordCandidates.push_back(iChord);
matthiasm@10 1400 break;
matthiasm@10 1401 }
matthiasm@10 1402 }
matthiasm@10 1403 }
matthiasm@10 1404 chordCandidates.push_back(nChord-1);
matthiasm@10 1405 // cerr << chordCandidates.size() << endl;
matthiasm@10 1406
matthiasm@10 1407 float maxval = 0; // will be the value of the most salient *chord change* in this frame
matthiasm@4 1408 float maxindex = 0; //... and the index thereof
matthiasm@10 1409 unsigned bestchordL = nChord-1; // index of the best "left" chord
matthiasm@10 1410 unsigned bestchordR = nChord-1; // index of the best "right" chord
matthiasm@10 1411
matthiasm@4 1412 for (int iWF = 1; iWF < 2*halfwindowlength; ++iWF) {
matthiasm@3 1413 // now find the max values on both sides of iWF
matthiasm@3 1414 // left side:
matthiasm@3 1415 float maxL = 0;
matthiasm@3 1416 unsigned maxindL = nChord-1;
matthiasm@10 1417 for (unsigned kChord = 0; kChord < chordCandidates.size(); kChord++) {
matthiasm@10 1418 unsigned iChord = chordCandidates[kChord];
matthiasm@3 1419 float currsum = 0;
matthiasm@3 1420 for (unsigned iFrame = 0; iFrame < iWF-1; ++iFrame) {
matthiasm@3 1421 currsum += chordogram[count+iFrame][iChord];
matthiasm@3 1422 }
matthiasm@3 1423 if (iChord == nChord-1) currsum *= 0.8;
matthiasm@3 1424 if (currsum > maxL) {
matthiasm@3 1425 maxL = currsum;
matthiasm@3 1426 maxindL = iChord;
matthiasm@3 1427 }
matthiasm@3 1428 }
matthiasm@3 1429 // right side:
matthiasm@3 1430 float maxR = 0;
matthiasm@3 1431 unsigned maxindR = nChord-1;
matthiasm@10 1432 for (unsigned kChord = 0; kChord < chordCandidates.size(); kChord++) {
matthiasm@10 1433 unsigned iChord = chordCandidates[kChord];
matthiasm@3 1434 float currsum = 0;
matthiasm@3 1435 for (unsigned iFrame = iWF-1; iFrame < 2*halfwindowlength; ++iFrame) {
matthiasm@3 1436 currsum += chordogram[count+iFrame][iChord];
matthiasm@3 1437 }
matthiasm@3 1438 if (iChord == nChord-1) currsum *= 0.8;
matthiasm@3 1439 if (currsum > maxR) {
matthiasm@3 1440 maxR = currsum;
matthiasm@3 1441 maxindR = iChord;
matthiasm@3 1442 }
matthiasm@3 1443 }
matthiasm@3 1444 if (maxL+maxR > maxval) {
matthiasm@3 1445 maxval = maxL+maxR;
matthiasm@3 1446 maxindex = iWF;
matthiasm@3 1447 bestchordL = maxindL;
matthiasm@3 1448 bestchordR = maxindR;
matthiasm@3 1449 }
matthiasm@3 1450
matthiasm@3 1451 }
matthiasm@3 1452 // cerr << "maxindex: " << maxindex << ", bestchordR is " << bestchordR << ", of frame " << count << endl;
matthiasm@3 1453 // add a score to every chord-frame-point that was part of a maximum
matthiasm@3 1454 for (unsigned iFrame = 0; iFrame < maxindex-1; ++iFrame) {
matthiasm@3 1455 scoreChordogram[iFrame+count][bestchordL]++;
matthiasm@3 1456 }
matthiasm@3 1457 for (unsigned iFrame = maxindex-1; iFrame < 2*halfwindowlength; ++iFrame) {
matthiasm@3 1458 scoreChordogram[iFrame+count][bestchordR]++;
matthiasm@3 1459 }
matthiasm@17 1460 if (bestchordL != bestchordR) chordchange[maxindex+count] += (halfwindowlength - abs(maxindex-halfwindowlength)) * 2.0 / halfwindowlength;
matthiasm@3 1461 count++;
matthiasm@3 1462 }
matthiasm@13 1463 // cerr << "******* agent finished *******" << endl;
matthiasm@3 1464 count = 0;
matthiasm@3 1465 for (FeatureList::iterator it = fsOut[6].begin(); it != fsOut[6].end(); ++it) {
matthiasm@3 1466 float maxval = 0; // will be the value of the most salient chord in this frame
matthiasm@3 1467 float maxindex = 0; //... and the index thereof
matthiasm@3 1468 for (unsigned iChord = 0; iChord < nChord; iChord++) {
matthiasm@3 1469 if (scoreChordogram[count][iChord] > maxval) {
matthiasm@3 1470 maxval = scoreChordogram[count][iChord];
matthiasm@3 1471 maxindex = iChord;
matthiasm@4 1472 // cerr << iChord << endl;
matthiasm@3 1473 }
matthiasm@3 1474 }
matthiasm@3 1475 chordSequence.push_back(maxindex);
matthiasm@4 1476 // cerr << "before modefilter, maxindex: " << maxindex << endl;
matthiasm@3 1477 count++;
matthiasm@3 1478 }
matthiasm@13 1479 // cerr << "******* mode filter done *******" << endl;
matthiasm@10 1480
matthiasm@3 1481
matthiasm@3 1482 // mode filter on chordSequence
matthiasm@3 1483 count = 0;
matthiasm@12 1484 string oldChord = "";
matthiasm@3 1485 for (FeatureList::iterator it = fsOut[6].begin(); it != fsOut[6].end(); ++it) {
matthiasm@3 1486 Feature f6 = *it;
matthiasm@3 1487 Feature f7; // chord estimate
matthiasm@3 1488 f7.hasTimestamp = true;
matthiasm@3 1489 f7.timestamp = f6.timestamp;
matthiasm@17 1490 Feature f8; // chord estimate
matthiasm@17 1491 f8.hasTimestamp = true;
matthiasm@17 1492 f8.timestamp = f6.timestamp;
matthiasm@17 1493
matthiasm@3 1494 vector<int> chordCount = vector<int>(nChord,0);
matthiasm@3 1495 int maxChordCount = 0;
matthiasm@3 1496 int maxChordIndex = nChord-1;
matthiasm@12 1497 string maxChord;
matthiasm@4 1498 int startIndex = max(count - halfwindowlength/2,0);
matthiasm@4 1499 int endIndex = min(int(chordogram.size()), count + halfwindowlength/2);
matthiasm@4 1500 for (int i = startIndex; i < endIndex; i++) {
matthiasm@4 1501 chordCount[chordSequence[i]]++;
matthiasm@4 1502 if (chordCount[chordSequence[i]] > maxChordCount) {
matthiasm@7 1503 // cerr << "start index " << startIndex << endl;
matthiasm@4 1504 maxChordCount++;
matthiasm@4 1505 maxChordIndex = chordSequence[i];
matthiasm@12 1506 maxChord = m_chordnames[maxChordIndex];
matthiasm@4 1507 }
matthiasm@4 1508 }
matthiasm@4 1509 // chordSequence[count] = maxChordIndex;
matthiasm@7 1510 // cerr << maxChordIndex << endl;
matthiasm@17 1511 f8.values.push_back(chordchange[count]/(halfwindowlength*2));
matthiasm@17 1512 // cerr << chordchange[count] << endl;
matthiasm@17 1513 fsOut[9].push_back(f8);
matthiasm@12 1514 if (oldChord != maxChord) {
matthiasm@12 1515 oldChord = maxChord;
matthiasm@3 1516
matthiasm@9 1517 // char buffer1 [50];
matthiasm@9 1518 // if (maxChordIndex < nChord - 1) {
matthiasm@9 1519 // sprintf(buffer1, "%s%s", notenames[maxChordIndex % 12 + 12], chordtypes[maxChordIndex]);
matthiasm@9 1520 // } else {
matthiasm@9 1521 // sprintf(buffer1, "N");
matthiasm@9 1522 // }
matthiasm@9 1523 // f7.label = buffer1;
matthiasm@9 1524 f7.label = m_chordnames[maxChordIndex];
matthiasm@3 1525 fsOut[7].push_back(f7);
matthiasm@3 1526 }
matthiasm@3 1527 count++;
matthiasm@3 1528 }
matthiasm@17 1529 Feature f7; // last chord estimate
matthiasm@17 1530 f7.hasTimestamp = true;
matthiasm@17 1531 f7.timestamp = fsOut[6][fsOut[6].size()-1].timestamp;
matthiasm@17 1532 f7.label = "N";
matthiasm@17 1533 fsOut[7].push_back(f7);
matthiasm@13 1534 cerr << "done." << endl;
matthiasm@0 1535 // // musicity
matthiasm@0 1536 // count = 0;
matthiasm@0 1537 // int oldlabeltype = 0; // start value is 0, music is 1, speech is 2
matthiasm@0 1538 // vector<float> musicityValue;
matthiasm@0 1539 // for (FeatureList::iterator it = fsOut[4].begin(); it != fsOut[4].end(); ++it) {
matthiasm@0 1540 // Feature f4 = *it;
matthiasm@0 1541 //
matthiasm@0 1542 // int startIndex = max(count - musicitykernelwidth/2,0);
matthiasm@0 1543 // int endIndex = min(int(chordogram.size()), startIndex + musicitykernelwidth - 1);
matthiasm@0 1544 // float chromasum = 0;
matthiasm@0 1545 // float diffsum = 0;
matthiasm@0 1546 // for (int k = 0; k < 12; k++) {
matthiasm@0 1547 // for (int i = startIndex + 1; i < endIndex; i++) {
matthiasm@0 1548 // chromasum += pow(fsOut[4][i].values[k],2);
matthiasm@0 1549 // diffsum += abs(fsOut[4][i-1].values[k] - fsOut[4][i].values[k]);
matthiasm@0 1550 // }
matthiasm@0 1551 // }
matthiasm@0 1552 // diffsum /= chromasum;
matthiasm@0 1553 // musicityValue.push_back(diffsum);
matthiasm@0 1554 // count++;
matthiasm@0 1555 // }
matthiasm@0 1556 //
matthiasm@0 1557 // float musicityThreshold = 0.44;
matthiasm@0 1558 // if (m_stepSize == 4096) {
matthiasm@0 1559 // musicityThreshold = 0.74;
matthiasm@0 1560 // }
matthiasm@0 1561 // if (m_stepSize == 4410) {
matthiasm@0 1562 // musicityThreshold = 0.77;
matthiasm@0 1563 // }
matthiasm@0 1564 //
matthiasm@0 1565 // count = 0;
matthiasm@0 1566 // for (FeatureList::iterator it = fsOut[4].begin(); it != fsOut[4].end(); ++it) {
matthiasm@0 1567 // Feature f4 = *it;
matthiasm@0 1568 // Feature f8; // musicity
matthiasm@0 1569 // Feature f9; // musicity segmenter
matthiasm@0 1570 //
matthiasm@0 1571 // f8.hasTimestamp = true;
matthiasm@0 1572 // f8.timestamp = f4.timestamp;
matthiasm@0 1573 // f9.hasTimestamp = true;
matthiasm@0 1574 // f9.timestamp = f4.timestamp;
matthiasm@0 1575 //
matthiasm@0 1576 // int startIndex = max(count - musicitykernelwidth/2,0);
matthiasm@0 1577 // int endIndex = min(int(chordogram.size()), startIndex + musicitykernelwidth - 1);
matthiasm@0 1578 // int musicityCount = 0;
matthiasm@0 1579 // for (int i = startIndex; i <= endIndex; i++) {
matthiasm@0 1580 // if (musicityValue[i] > musicityThreshold) musicityCount++;
matthiasm@0 1581 // }
matthiasm@0 1582 // bool isSpeech = (2 * musicityCount > endIndex - startIndex + 1);
matthiasm@0 1583 //
matthiasm@0 1584 // if (isSpeech) {
matthiasm@0 1585 // if (oldlabeltype != 2) {
matthiasm@0 1586 // f9.label = "Speech";
matthiasm@0 1587 // fsOut[9].push_back(f9);
matthiasm@0 1588 // oldlabeltype = 2;
matthiasm@0 1589 // }
matthiasm@0 1590 // } else {
matthiasm@0 1591 // if (oldlabeltype != 1) {
matthiasm@0 1592 // f9.label = "Music";
matthiasm@0 1593 // fsOut[9].push_back(f9);
matthiasm@0 1594 // oldlabeltype = 1;
matthiasm@0 1595 // }
matthiasm@0 1596 // }
matthiasm@0 1597 // f8.values.push_back(musicityValue[count]);
matthiasm@0 1598 // fsOut[8].push_back(f8);
matthiasm@0 1599 // count++;
matthiasm@0 1600 // }
matthiasm@0 1601 return fsOut;
matthiasm@0 1602
matthiasm@0 1603 }
matthiasm@0 1604