annotate Chordino.cpp @ 127:28c8e52139b5 monophonicness

renamed loglikelihood output
author Matthias Mauch <mail@matthiasmauch.net>
date Sat, 11 Jun 2011 17:53:20 +0100
parents 2518ef286816
children
rev   line source
Chris@23 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
matthiasm@0 2
Chris@35 3 /*
Chris@35 4 NNLS-Chroma / Chordino
Chris@35 5
Chris@35 6 Audio feature extraction plugins for chromagram and chord
Chris@35 7 estimation.
Chris@35 8
Chris@35 9 Centre for Digital Music, Queen Mary University of London.
Chris@35 10 This file copyright 2008-2010 Matthias Mauch and QMUL.
Chris@35 11
Chris@35 12 This program is free software; you can redistribute it and/or
Chris@35 13 modify it under the terms of the GNU General Public License as
Chris@35 14 published by the Free Software Foundation; either version 2 of the
Chris@35 15 License, or (at your option) any later version. See the file
Chris@35 16 COPYING included with this distribution for more information.
Chris@35 17 */
Chris@35 18
Chris@35 19 #include "Chordino.h"
Chris@27 20
Chris@27 21 #include "chromamethods.h"
matthiasm@43 22 #include "viterbi.h"
Chris@27 23
Chris@27 24 #include <cstdlib>
Chris@27 25 #include <fstream>
matthiasm@0 26 #include <cmath>
matthiasm@9 27
Chris@27 28 #include <algorithm>
matthiasm@0 29
matthiasm@0 30 const bool debug_on = false;
matthiasm@0 31
Chris@35 32 Chordino::Chordino(float inputSampleRate) :
matthiasm@86 33 NNLSBase(inputSampleRate),
matthiasm@86 34 m_chorddict(0),
matthiasm@86 35 m_chordnotes(0),
matthiasm@86 36 m_chordnames(0)
matthiasm@0 37 {
Chris@35 38 if (debug_on) cerr << "--> Chordino" << endl;
matthiasm@0 39 }
matthiasm@0 40
Chris@35 41 Chordino::~Chordino()
matthiasm@0 42 {
Chris@35 43 if (debug_on) cerr << "--> ~Chordino" << endl;
matthiasm@0 44 }
matthiasm@0 45
matthiasm@0 46 string
Chris@35 47 Chordino::getIdentifier() const
matthiasm@0 48 {
Chris@23 49 if (debug_on) cerr << "--> getIdentifier" << endl;
Chris@35 50 return "chordino";
matthiasm@0 51 }
matthiasm@0 52
matthiasm@0 53 string
Chris@35 54 Chordino::getName() const
matthiasm@0 55 {
Chris@23 56 if (debug_on) cerr << "--> getName" << endl;
Chris@35 57 return "Chordino";
matthiasm@0 58 }
matthiasm@0 59
matthiasm@0 60 string
Chris@35 61 Chordino::getDescription() const
matthiasm@0 62 {
Chris@23 63 if (debug_on) cerr << "--> getDescription" << endl;
matthiasm@58 64 return "Chordino provides a simple chord transcription based on NNLS Chroma (as in the NNLS Chroma plugin). Chord profiles given by the user in the file chord.dict are used to calculate frame-wise chord similarities. Two simple (non-state-of-the-art!) algorithms are available that smooth these to provide a chord transcription: a simple chord change method, and a standard HMM/Viterbi approach.";
matthiasm@0 65 }
matthiasm@0 66
matthiasm@50 67 Chordino::ParameterList
matthiasm@50 68 Chordino::getParameterDescriptors() const
matthiasm@50 69 {
matthiasm@50 70 if (debug_on) cerr << "--> getParameterDescriptors" << endl;
matthiasm@50 71 ParameterList list;
matthiasm@50 72
mail@118 73 ParameterDescriptor useNNLSParam;
mail@118 74 useNNLSParam.identifier = "useNNLS";
mail@118 75 useNNLSParam.name = "use approximate transcription (NNLS)";
mail@118 76 useNNLSParam.description = "Toggles approximate transcription (NNLS).";
mail@118 77 useNNLSParam.unit = "";
mail@118 78 useNNLSParam.minValue = 0.0;
mail@118 79 useNNLSParam.maxValue = 1.0;
mail@118 80 useNNLSParam.defaultValue = 1.0;
mail@118 81 useNNLSParam.isQuantized = true;
mail@118 82 useNNLSParam.quantizeStep = 1.0;
mail@118 83 list.push_back(useNNLSParam);
matthiasm@50 84
mail@118 85 ParameterDescriptor useHMMParam;
mail@118 86 useHMMParam.identifier = "useHMM";
mail@118 87 useHMMParam.name = "HMM (Viterbi decoding)";
mail@118 88 useHMMParam.description = "Turns on Viterbi decoding (when off, the simple chord estimator is used).";
mail@118 89 useHMMParam.unit = "";
mail@118 90 useHMMParam.minValue = 0.0;
mail@118 91 useHMMParam.maxValue = 1.0;
mail@118 92 useHMMParam.defaultValue = 1.0;
mail@118 93 useHMMParam.isQuantized = true;
mail@118 94 useHMMParam.quantizeStep = 1.0;
mail@118 95 list.push_back(useHMMParam);
matthiasm@50 96
mail@118 97 ParameterDescriptor rollonParam;
mail@118 98 rollonParam.identifier = "rollon";
mail@118 99 rollonParam.name = "bass noise threshold";
mail@118 100 rollonParam.description = "Consider the cumulative energy spectrum (from low to high frequencies). All bins below the first bin whose cumulative energy exceeds the quantile [bass noise threshold] x [total energy] will be set to 0. A threshold value of 0 means that no bins will be changed.";
mail@118 101 rollonParam.unit = "%";
mail@118 102 rollonParam.minValue = 0;
mail@118 103 rollonParam.maxValue = 5;
mail@118 104 rollonParam.defaultValue = 0.0;
mail@118 105 rollonParam.isQuantized = true;
mail@118 106 rollonParam.quantizeStep = 0.5;
mail@118 107 list.push_back(rollonParam);
matthiasm@50 108
mail@118 109 ParameterDescriptor tuningmodeParam;
mail@118 110 tuningmodeParam.identifier = "tuningmode";
mail@118 111 tuningmodeParam.name = "tuning mode";
mail@118 112 tuningmodeParam.description = "Tuning can be performed locally or on the whole extraction segment. Local tuning is only advisable when the tuning is likely to change over the audio, for example in podcasts, or in a cappella singing.";
mail@118 113 tuningmodeParam.unit = "";
mail@118 114 tuningmodeParam.minValue = 0;
mail@118 115 tuningmodeParam.maxValue = 1;
mail@118 116 tuningmodeParam.defaultValue = 0.0;
mail@118 117 tuningmodeParam.isQuantized = true;
mail@118 118 tuningmodeParam.valueNames.push_back("global tuning");
mail@118 119 tuningmodeParam.valueNames.push_back("local tuning");
mail@118 120 tuningmodeParam.quantizeStep = 1.0;
mail@118 121 list.push_back(tuningmodeParam);
matthiasm@50 122
mail@118 123 ParameterDescriptor whiteningParam;
mail@118 124 whiteningParam.identifier = "whitening";
mail@118 125 whiteningParam.name = "spectral whitening";
mail@118 126 whiteningParam.description = "Spectral whitening: no whitening - 0; whitening - 1.";
mail@118 127 whiteningParam.unit = "";
mail@118 128 whiteningParam.isQuantized = true;
mail@118 129 whiteningParam.minValue = 0.0;
mail@118 130 whiteningParam.maxValue = 1.0;
mail@118 131 whiteningParam.defaultValue = 1.0;
mail@118 132 whiteningParam.isQuantized = false;
mail@118 133 list.push_back(whiteningParam);
matthiasm@50 134
mail@118 135 ParameterDescriptor spectralShapeParam;
mail@118 136 spectralShapeParam.identifier = "spectralshape";
mail@118 137 spectralShapeParam.name = "spectral shape";
mail@118 138 spectralShapeParam.description = "Determines how individual notes in the note dictionary look: higher values mean more dominant higher harmonics.";
mail@118 139 spectralShapeParam.unit = "";
mail@118 140 spectralShapeParam.minValue = 0.5;
mail@118 141 spectralShapeParam.maxValue = 0.9;
mail@118 142 spectralShapeParam.defaultValue = 0.7;
mail@118 143 spectralShapeParam.isQuantized = false;
mail@118 144 list.push_back(spectralShapeParam);
matthiasm@50 145
mail@118 146 ParameterDescriptor boostnParam;
mail@118 147 boostnParam.identifier = "boostn";
mail@118 148 boostnParam.name = "boost N";
mail@118 149 boostnParam.description = "Boost likelihood of the N (no chord) label.";
mail@118 150 boostnParam.unit = "";
mail@118 151 boostnParam.minValue = 0.0;
mail@118 152 boostnParam.maxValue = 1.0;
mail@118 153 boostnParam.defaultValue = 0.1;
mail@118 154 boostnParam.isQuantized = false;
mail@118 155 list.push_back(boostnParam);
matthiasm@50 156
mail@118 157 ParameterDescriptor usehartesyntaxParam;
mail@118 158 usehartesyntaxParam.identifier = "usehartesyntax";
mail@118 159 usehartesyntaxParam.name = "use Harte syntax";
mail@118 160 usehartesyntaxParam.description = "Use the chord syntax proposed by Harte";
mail@118 161 usehartesyntaxParam.unit = "";
mail@118 162 usehartesyntaxParam.minValue = 0.0;
mail@118 163 usehartesyntaxParam.maxValue = 1.0;
mail@118 164 usehartesyntaxParam.defaultValue = 0.0;
mail@118 165 usehartesyntaxParam.isQuantized = true;
mail@118 166 usehartesyntaxParam.quantizeStep = 1.0;
mail@118 167 usehartesyntaxParam.valueNames.push_back("no");
mail@118 168 usehartesyntaxParam.valueNames.push_back("yes");
mail@118 169 list.push_back(usehartesyntaxParam);
mail@112 170
matthiasm@50 171 return list;
matthiasm@50 172 }
matthiasm@50 173
Chris@35 174 Chordino::OutputList
Chris@35 175 Chordino::getOutputDescriptors() const
matthiasm@0 176 {
Chris@23 177 if (debug_on) cerr << "--> getOutputDescriptors" << endl;
matthiasm@0 178 OutputList list;
matthiasm@0 179
Chris@35 180 int index = 0;
matthiasm@0 181
matthiasm@0 182 OutputDescriptor d7;
matthiasm@0 183 d7.identifier = "simplechord";
Chris@36 184 d7.name = "Chord Estimate";
matthiasm@58 185 d7.description = "Estimated chord times and labels. Two simple (non-state-of-the-art!) algorithms are available that smooth these to provide a chord transcription: a simple chord change method, and a standard HMM/Viterbi approach.";
matthiasm@0 186 d7.unit = "";
matthiasm@0 187 d7.hasFixedBinCount = true;
matthiasm@0 188 d7.binCount = 0;
matthiasm@0 189 d7.hasKnownExtents = false;
matthiasm@0 190 d7.isQuantized = false;
matthiasm@0 191 d7.sampleType = OutputDescriptor::VariableSampleRate;
matthiasm@0 192 d7.hasDuration = false;
matthiasm@0 193 d7.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@0 194 list.push_back(d7);
Chris@35 195 m_outputChords = index++;
matthiasm@0 196
matthiasm@86 197 OutputDescriptor chordnotes;
matthiasm@86 198 chordnotes.identifier = "chordnotes";
matthiasm@86 199 chordnotes.name = "Note Representation of Chord Estimate";
matthiasm@86 200 chordnotes.description = "A simple represenation of the estimated chord with bass note (if applicable) and chord notes.";
matthiasm@86 201 chordnotes.unit = "MIDI units";
matthiasm@86 202 chordnotes.hasFixedBinCount = true;
matthiasm@86 203 chordnotes.binCount = 1;
matthiasm@86 204 chordnotes.hasKnownExtents = true;
matthiasm@86 205 chordnotes.minValue = 0;
matthiasm@86 206 chordnotes.maxValue = 127;
matthiasm@86 207 chordnotes.isQuantized = true;
matthiasm@86 208 chordnotes.quantizeStep = 1;
matthiasm@86 209 chordnotes.sampleType = OutputDescriptor::VariableSampleRate;
matthiasm@86 210 chordnotes.hasDuration = true;
matthiasm@86 211 chordnotes.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@86 212 list.push_back(chordnotes);
matthiasm@86 213 m_outputChordnotes = index++;
matthiasm@86 214
Chris@23 215 OutputDescriptor d8;
mail@60 216 d8.identifier = "harmonicchange";
Chris@36 217 d8.name = "Harmonic Change Value";
matthiasm@58 218 d8.description = "An indication of the likelihood of harmonic change. Depends on the chord dictionary. Calculation is different depending on whether the Viterbi algorithm is used for chord estimation, or the simple chord estimate.";
matthiasm@17 219 d8.unit = "";
matthiasm@17 220 d8.hasFixedBinCount = true;
matthiasm@17 221 d8.binCount = 1;
mail@60 222 d8.hasKnownExtents = false;
mail@60 223 // d8.minValue = 0.0;
mail@60 224 // d8.maxValue = 0.999;
matthiasm@17 225 d8.isQuantized = false;
matthiasm@17 226 d8.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@17 227 d8.hasDuration = false;
matthiasm@17 228 // d8.sampleRate = (m_stepSize == 0) ? m_inputSampleRate/2048 : m_inputSampleRate/m_stepSize;
matthiasm@17 229 list.push_back(d8);
Chris@35 230 m_outputHarmonicChange = index++;
matthiasm@1 231
matthiasm@107 232 OutputDescriptor loglikelihood;
matthiasm@107 233 loglikelihood.identifier = "loglikelihood";
mail@127 234 loglikelihood.name = "Log-Likelihood of Chord Estimate";
mail@127 235 loglikelihood.description = "Logarithm of the likelihood value of the simple chord estimate.";
matthiasm@107 236 loglikelihood.unit = "";
matthiasm@107 237 loglikelihood.hasFixedBinCount = true;
matthiasm@107 238 loglikelihood.binCount = 1;
matthiasm@107 239 loglikelihood.hasKnownExtents = false;
matthiasm@107 240 loglikelihood.isQuantized = false;
matthiasm@107 241 loglikelihood.sampleType = OutputDescriptor::FixedSampleRate;
matthiasm@107 242 loglikelihood.hasDuration = false;
matthiasm@107 243 list.push_back(loglikelihood);
matthiasm@107 244 m_outputLoglikelihood = index++;
matthiasm@106 245
matthiasm@0 246 return list;
matthiasm@0 247 }
matthiasm@0 248
matthiasm@0 249 bool
Chris@35 250 Chordino::initialise(size_t channels, size_t stepSize, size_t blockSize)
matthiasm@0 251 {
Chris@23 252 if (debug_on) {
Chris@23 253 cerr << "--> initialise";
Chris@23 254 }
mail@76 255
Chris@35 256 if (!NNLSBase::initialise(channels, stepSize, blockSize)) {
Chris@35 257 return false;
Chris@35 258 }
mail@115 259 m_chordnames = chordDictionary(&m_chorddict, &m_chordnotes, m_boostN, m_harte_syntax);
matthiasm@0 260 return true;
matthiasm@0 261 }
matthiasm@0 262
matthiasm@0 263 void
Chris@35 264 Chordino::reset()
matthiasm@0 265 {
Chris@23 266 if (debug_on) cerr << "--> reset";
Chris@35 267 NNLSBase::reset();
matthiasm@0 268 }
matthiasm@0 269
Chris@35 270 Chordino::FeatureSet
Chris@35 271 Chordino::process(const float *const *inputBuffers, Vamp::RealTime timestamp)
matthiasm@0 272 {
Chris@23 273 if (debug_on) cerr << "--> process" << endl;
matthiasm@0 274
Chris@35 275 NNLSBase::baseProcess(inputBuffers, timestamp);
matthiasm@0 276
Chris@35 277 return FeatureSet();
matthiasm@0 278 }
matthiasm@0 279
Chris@35 280 Chordino::FeatureSet
Chris@35 281 Chordino::getRemainingFeatures()
matthiasm@0 282 {
mail@89 283 // cerr << hw[0] << hw[1] << endl;
mail@89 284 if (debug_on) cerr << "--> getRemainingFeatures" << endl;
Chris@23 285 FeatureSet fsOut;
Chris@35 286 if (m_logSpectrum.size() == 0) return fsOut;
Chris@23 287 int nChord = m_chordnames.size();
Chris@23 288 //
Chris@23 289 /** Calculate Tuning
Chris@23 290 calculate tuning from (using the angle of the complex number defined by the
Chris@23 291 cumulative mean real and imag values)
Chris@23 292 **/
mail@80 293 float meanTuningImag = 0;
mail@80 294 float meanTuningReal = 0;
mail@80 295 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
mail@80 296 meanTuningReal += m_meanTunings[iBPS] * cosvalues[iBPS];
mail@80 297 meanTuningImag += m_meanTunings[iBPS] * sinvalues[iBPS];
mail@80 298 }
Chris@23 299 float cumulativetuning = 440 * pow(2,atan2(meanTuningImag, meanTuningReal)/(24*M_PI));
Chris@23 300 float normalisedtuning = atan2(meanTuningImag, meanTuningReal)/(2*M_PI);
Chris@23 301 int intShift = floor(normalisedtuning * 3);
mail@80 302 float floatShift = normalisedtuning * 3 - intShift; // floatShift is a really bad name for this
matthiasm@1 303
Chris@23 304 char buffer0 [50];
matthiasm@1 305
Chris@23 306 sprintf(buffer0, "estimated tuning: %0.1f Hz", cumulativetuning);
matthiasm@1 307
matthiasm@1 308
Chris@23 309 /** Tune Log-Frequency Spectrogram
matthiasm@43 310 calculate a tuned log-frequency spectrogram (currentTunedSpec): use the tuning estimated above (kinda f0) to
Chris@91 311 perform linear interpolation on the existing log-frequency spectrogram (kinda currentLogSpectrum).
Chris@23 312 **/
Chris@35 313 cerr << endl << "[Chordino Plugin] Tuning Log-Frequency Spectrogram ... ";
matthiasm@13 314
Chris@23 315 int count = 0;
matthiasm@1 316
Chris@35 317 FeatureList tunedSpec;
matthiasm@43 318 int nFrame = m_logSpectrum.size();
matthiasm@43 319
matthiasm@43 320 vector<Vamp::RealTime> timestamps;
Chris@35 321
Chris@35 322 for (FeatureList::iterator i = m_logSpectrum.begin(); i != m_logSpectrum.end(); ++i) {
Chris@91 323 Feature currentLogSpectrum = *i;
matthiasm@43 324 Feature currentTunedSpec; // tuned log-frequency spectrum
matthiasm@43 325 currentTunedSpec.hasTimestamp = true;
Chris@91 326 currentTunedSpec.timestamp = currentLogSpectrum.timestamp;
Chris@91 327 timestamps.push_back(currentLogSpectrum.timestamp);
matthiasm@43 328 currentTunedSpec.values.push_back(0.0); currentTunedSpec.values.push_back(0.0); // set lower edge to zero
matthiasm@1 329
Chris@23 330 if (m_tuneLocal) {
Chris@23 331 intShift = floor(m_localTuning[count] * 3);
mail@80 332 floatShift = m_localTuning[count] * 3 - intShift; // floatShift is a really bad name for this
Chris@23 333 }
matthiasm@1 334
mail@80 335 // cerr << intShift << " " << floatShift << endl;
matthiasm@1 336
Chris@91 337 for (int k = 2; k < (int)currentLogSpectrum.values.size() - 3; ++k) { // interpolate all inner bins
mail@115 338 float tempValue = currentLogSpectrum.values[k + intShift] * (1-floatShift) + currentLogSpectrum.values[k+intShift+1] * floatShift;
matthiasm@43 339 currentTunedSpec.values.push_back(tempValue);
Chris@23 340 }
matthiasm@1 341
matthiasm@43 342 currentTunedSpec.values.push_back(0.0); currentTunedSpec.values.push_back(0.0); currentTunedSpec.values.push_back(0.0); // upper edge
matthiasm@43 343 vector<float> runningmean = SpecialConvolution(currentTunedSpec.values,hw);
Chris@23 344 vector<float> runningstd;
mail@77 345 for (int i = 0; i < nNote; i++) { // first step: squared values into vector (variance)
matthiasm@43 346 runningstd.push_back((currentTunedSpec.values[i] - runningmean[i]) * (currentTunedSpec.values[i] - runningmean[i]));
Chris@23 347 }
Chris@23 348 runningstd = SpecialConvolution(runningstd,hw); // second step convolve
mail@77 349 for (int i = 0; i < nNote; i++) {
Chris@23 350 runningstd[i] = sqrt(runningstd[i]); // square root to finally have running std
Chris@23 351 if (runningstd[i] > 0) {
matthiasm@43 352 // currentTunedSpec.values[i] = (currentTunedSpec.values[i] / runningmean[i]) > thresh ?
matthiasm@43 353 // (currentTunedSpec.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0;
matthiasm@43 354 currentTunedSpec.values[i] = (currentTunedSpec.values[i] - runningmean[i]) > 0 ?
matthiasm@43 355 (currentTunedSpec.values[i] - runningmean[i]) / pow(runningstd[i],m_whitening) : 0;
Chris@23 356 }
matthiasm@43 357 if (currentTunedSpec.values[i] < 0) {
Chris@23 358 cerr << "ERROR: negative value in logfreq spectrum" << endl;
Chris@23 359 }
Chris@23 360 }
matthiasm@43 361 tunedSpec.push_back(currentTunedSpec);
Chris@23 362 count++;
Chris@23 363 }
Chris@23 364 cerr << "done." << endl;
matthiasm@1 365
Chris@23 366 /** Semitone spectrum and chromagrams
Chris@23 367 Semitone-spaced log-frequency spectrum derived from the tuned log-freq spectrum above. the spectrum
Chris@23 368 is inferred using a non-negative least squares algorithm.
Chris@23 369 Three different kinds of chromagram are calculated, "treble", "bass", and "both" (which means
Chris@23 370 bass and treble stacked onto each other).
Chris@23 371 **/
matthiasm@42 372 if (m_useNNLS == 0) {
Chris@35 373 cerr << "[Chordino Plugin] Mapping to semitone spectrum and chroma ... ";
Chris@23 374 } else {
Chris@35 375 cerr << "[Chordino Plugin] Performing NNLS and mapping to chroma ... ";
Chris@23 376 }
matthiasm@13 377
matthiasm@1 378
matthiasm@43 379 vector<vector<double> > chordogram;
Chris@23 380 vector<vector<int> > scoreChordogram;
Chris@35 381 vector<float> chordchange = vector<float>(tunedSpec.size(),0);
Chris@23 382 count = 0;
matthiasm@9 383
Chris@35 384 FeatureList chromaList;
matthiasm@43 385
matthiasm@43 386
Chris@35 387
Chris@35 388 for (FeatureList::iterator it = tunedSpec.begin(); it != tunedSpec.end(); ++it) {
matthiasm@43 389 Feature currentTunedSpec = *it; // logfreq spectrum
matthiasm@43 390 Feature currentChromas; // treble and bass chromagram
Chris@35 391
matthiasm@43 392 currentChromas.hasTimestamp = true;
matthiasm@43 393 currentChromas.timestamp = currentTunedSpec.timestamp;
Chris@35 394
mail@77 395 float b[nNote];
matthiasm@1 396
Chris@23 397 bool some_b_greater_zero = false;
Chris@23 398 float sumb = 0;
mail@77 399 for (int i = 0; i < nNote; i++) {
mail@77 400 // b[i] = m_dict[(nNote * count + i) % (nNote * 84)];
matthiasm@43 401 b[i] = currentTunedSpec.values[i];
Chris@23 402 sumb += b[i];
Chris@23 403 if (b[i] > 0) {
Chris@23 404 some_b_greater_zero = true;
Chris@23 405 }
Chris@23 406 }
matthiasm@1 407
Chris@23 408 // here's where the non-negative least squares algorithm calculates the note activation x
matthiasm@1 409
Chris@23 410 vector<float> chroma = vector<float>(12, 0);
Chris@23 411 vector<float> basschroma = vector<float>(12, 0);
Chris@23 412 float currval;
Chris@91 413 int iSemitone = 0;
matthiasm@1 414
Chris@23 415 if (some_b_greater_zero) {
matthiasm@42 416 if (m_useNNLS == 0) {
Chris@91 417 for (int iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) {
Chris@23 418 currval = 0;
mail@81 419 for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) {
mail@81 420 currval += b[iNote + iBPS] * (1-abs(iBPS*1.0/(nBPS/2+1)));
mail@81 421 }
Chris@23 422 chroma[iSemitone % 12] += currval * treblewindow[iSemitone];
Chris@23 423 basschroma[iSemitone % 12] += currval * basswindow[iSemitone];
Chris@23 424 iSemitone++;
Chris@23 425 }
matthiasm@1 426
Chris@23 427 } else {
Chris@35 428 float x[84+1000];
Chris@23 429 for (int i = 1; i < 1084; ++i) x[i] = 1.0;
Chris@23 430 vector<int> signifIndex;
Chris@23 431 int index=0;
Chris@23 432 sumb /= 84.0;
Chris@91 433 for (int iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) {
Chris@23 434 float currval = 0;
mail@81 435 for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) {
mail@81 436 currval += b[iNote + iBPS];
mail@81 437 }
Chris@23 438 if (currval > 0) signifIndex.push_back(index);
Chris@23 439 index++;
Chris@23 440 }
Chris@35 441 float rnorm;
Chris@35 442 float w[84+1000];
Chris@35 443 float zz[84+1000];
Chris@23 444 int indx[84+1000];
Chris@23 445 int mode;
mail@77 446 int dictsize = nNote*signifIndex.size();
mail@81 447 // cerr << "dictsize is " << dictsize << "and values size" << f3.values.size()<< endl;
Chris@35 448 float *curr_dict = new float[dictsize];
Chris@91 449 for (int iNote = 0; iNote < (int)signifIndex.size(); ++iNote) {
Chris@91 450 for (int iBin = 0; iBin < nNote; iBin++) {
mail@77 451 curr_dict[iNote * nNote + iBin] = 1.0 * m_dict[signifIndex[iNote] * nNote + iBin];
Chris@23 452 }
Chris@23 453 }
Chris@35 454 nnls(curr_dict, nNote, nNote, signifIndex.size(), b, x, &rnorm, w, zz, indx, &mode);
Chris@23 455 delete [] curr_dict;
Chris@91 456 for (int iNote = 0; iNote < (int)signifIndex.size(); ++iNote) {
Chris@23 457 // cerr << mode << endl;
Chris@23 458 chroma[signifIndex[iNote] % 12] += x[iNote] * treblewindow[signifIndex[iNote]];
Chris@23 459 basschroma[signifIndex[iNote] % 12] += x[iNote] * basswindow[signifIndex[iNote]];
Chris@23 460 }
Chris@23 461 }
Chris@23 462 }
Chris@35 463
Chris@35 464 vector<float> origchroma = chroma;
Chris@23 465 chroma.insert(chroma.begin(), basschroma.begin(), basschroma.end()); // just stack the both chromas
matthiasm@43 466 currentChromas.values = chroma;
Chris@35 467
Chris@23 468 if (m_doNormalizeChroma > 0) {
Chris@23 469 vector<float> chromanorm = vector<float>(3,0);
Chris@23 470 switch (int(m_doNormalizeChroma)) {
Chris@23 471 case 0: // should never end up here
Chris@23 472 break;
Chris@23 473 case 1:
Chris@35 474 chromanorm[0] = *max_element(origchroma.begin(), origchroma.end());
Chris@35 475 chromanorm[1] = *max_element(basschroma.begin(), basschroma.end());
Chris@23 476 chromanorm[2] = max(chromanorm[0], chromanorm[1]);
Chris@23 477 break;
Chris@23 478 case 2:
Chris@35 479 for (vector<float>::iterator it = chroma.begin(); it != chroma.end(); ++it) {
Chris@23 480 chromanorm[2] += *it;
Chris@23 481 }
Chris@23 482 break;
Chris@23 483 case 3:
Chris@35 484 for (vector<float>::iterator it = chroma.begin(); it != chroma.end(); ++it) {
Chris@23 485 chromanorm[2] += pow(*it,2);
Chris@23 486 }
Chris@23 487 chromanorm[2] = sqrt(chromanorm[2]);
Chris@23 488 break;
Chris@23 489 }
Chris@23 490 if (chromanorm[2] > 0) {
Chris@91 491 for (int i = 0; i < (int)chroma.size(); i++) {
matthiasm@43 492 currentChromas.values[i] /= chromanorm[2];
Chris@23 493 }
Chris@23 494 }
Chris@23 495 }
Chris@35 496
mail@125 497 if (*max_element(origchroma.begin(), origchroma.end()) == 0) {
mail@125 498 for (int i = 0; i < (int)chroma.size(); i++) {
matthiasm@122 499 chroma[i] = 1;
matthiasm@122 500 }
mail@125 501 }
mail@113 502
matthiasm@43 503 chromaList.push_back(currentChromas);
Chris@35 504
Chris@23 505 // local chord estimation
matthiasm@43 506 vector<double> currentChordSalience;
matthiasm@43 507 double tempchordvalue = 0;
matthiasm@43 508 double sumchordvalue = 0;
matthiasm@9 509
Chris@23 510 for (int iChord = 0; iChord < nChord; iChord++) {
Chris@23 511 tempchordvalue = 0;
Chris@23 512 for (int iBin = 0; iBin < 12; iBin++) {
matthiasm@44 513 tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin];
Chris@23 514 }
Chris@23 515 for (int iBin = 12; iBin < 24; iBin++) {
Chris@23 516 tempchordvalue += m_chorddict[24 * iChord + iBin] * chroma[iBin];
Chris@23 517 }
matthiasm@48 518 if (iChord == nChord-1) tempchordvalue *= .7;
matthiasm@48 519 if (tempchordvalue < 0) tempchordvalue = 0.0;
matthiasm@50 520 tempchordvalue = pow(1.3,tempchordvalue);
Chris@23 521 sumchordvalue+=tempchordvalue;
Chris@23 522 currentChordSalience.push_back(tempchordvalue);
Chris@23 523 }
Chris@23 524 if (sumchordvalue > 0) {
Chris@23 525 for (int iChord = 0; iChord < nChord; iChord++) {
Chris@23 526 currentChordSalience[iChord] /= sumchordvalue;
Chris@23 527 }
Chris@23 528 } else {
Chris@23 529 currentChordSalience[nChord-1] = 1.0;
Chris@23 530 }
Chris@23 531 chordogram.push_back(currentChordSalience);
matthiasm@1 532
Chris@23 533 count++;
Chris@23 534 }
Chris@23 535 cerr << "done." << endl;
matthiasm@13 536
matthiasm@86 537 vector<Feature> oldnotes;
matthiasm@10 538
matthiasm@50 539 // bool m_useHMM = true; // this will go into the chordino header file.
matthiasm@50 540 if (m_useHMM == 1.0) {
matthiasm@44 541 cerr << "[Chordino Plugin] HMM Chord Estimation ... ";
matthiasm@43 542 int oldchord = nChord-1;
matthiasm@48 543 double selftransprob = 0.99;
matthiasm@43 544
matthiasm@48 545 // vector<double> init = vector<double>(nChord,1.0/nChord);
matthiasm@48 546 vector<double> init = vector<double>(nChord,0); init[nChord-1] = 1;
matthiasm@48 547
matthiasm@50 548 double *delta;
matthiasm@50 549 delta = (double *)malloc(sizeof(double)*nFrame*nChord);
matthiasm@50 550
matthiasm@43 551 vector<vector<double> > trans;
matthiasm@43 552 for (int iChord = 0; iChord < nChord; iChord++) {
matthiasm@43 553 vector<double> temp = vector<double>(nChord,(1-selftransprob)/(nChord-1));
matthiasm@43 554 temp[iChord] = selftransprob;
matthiasm@43 555 trans.push_back(temp);
matthiasm@43 556 }
matthiasm@106 557 vector<double> scale;
matthiasm@106 558 vector<int> chordpath = ViterbiPath(init, trans, chordogram, delta, &scale);
matthiasm@106 559
matthiasm@48 560
matthiasm@48 561 Feature chord_feature; // chord estimate
matthiasm@48 562 chord_feature.hasTimestamp = true;
matthiasm@48 563 chord_feature.timestamp = timestamps[0];
matthiasm@48 564 chord_feature.label = m_chordnames[chordpath[0]];
mail@60 565 fsOut[m_outputChords].push_back(chord_feature);
matthiasm@43 566
mail@60 567 chordchange[0] = 0;
Chris@91 568 for (int iFrame = 1; iFrame < (int)chordpath.size(); ++iFrame) {
matthiasm@43 569 // cerr << chordpath[iFrame] << endl;
matthiasm@48 570 if (chordpath[iFrame] != oldchord ) {
matthiasm@86 571 // chord
matthiasm@43 572 Feature chord_feature; // chord estimate
matthiasm@43 573 chord_feature.hasTimestamp = true;
matthiasm@43 574 chord_feature.timestamp = timestamps[iFrame];
matthiasm@43 575 chord_feature.label = m_chordnames[chordpath[iFrame]];
mail@60 576 fsOut[m_outputChords].push_back(chord_feature);
matthiasm@43 577 oldchord = chordpath[iFrame];
matthiasm@86 578 // chord notes
Chris@91 579 for (int iNote = 0; iNote < (int)oldnotes.size(); ++iNote) { // finish duration of old chord
matthiasm@86 580 oldnotes[iNote].duration = oldnotes[iNote].duration + timestamps[iFrame];
matthiasm@86 581 fsOut[m_outputChordnotes].push_back(oldnotes[iNote]);
matthiasm@86 582 }
matthiasm@86 583 oldnotes.clear();
Chris@91 584 for (int iNote = 0; iNote < (int)m_chordnotes[chordpath[iFrame]].size(); ++iNote) { // prepare notes of current chord
matthiasm@86 585 Feature chordnote_feature;
matthiasm@86 586 chordnote_feature.hasTimestamp = true;
matthiasm@86 587 chordnote_feature.timestamp = timestamps[iFrame];
matthiasm@86 588 chordnote_feature.values.push_back(m_chordnotes[chordpath[iFrame]][iNote]);
matthiasm@86 589 chordnote_feature.hasDuration = true;
matthiasm@86 590 chordnote_feature.duration = -timestamps[iFrame]; // this will be corrected at the next chord
matthiasm@86 591 oldnotes.push_back(chordnote_feature);
matthiasm@86 592 }
Chris@23 593 }
matthiasm@50 594 /* calculating simple chord change prob */
matthiasm@50 595 for (int iChord = 0; iChord < nChord; iChord++) {
matthiasm@50 596 chordchange[iFrame-1] += delta[(iFrame-1)*nChord + iChord] * log(delta[(iFrame-1)*nChord + iChord]/delta[iFrame*nChord + iChord]);
matthiasm@50 597 }
Chris@23 598 }
matthiasm@43 599
matthiasm@106 600 float logscale = 0;
matthiasm@106 601 for (int iFrame = 0; iFrame < nFrame; ++iFrame) {
matthiasm@106 602 logscale -= log(scale[iFrame]);
matthiasm@106 603 Feature loglikelihood;
matthiasm@106 604 loglikelihood.hasTimestamp = true;
matthiasm@106 605 loglikelihood.timestamp = timestamps[iFrame];
matthiasm@106 606 loglikelihood.values.push_back(-log(scale[iFrame]));
matthiasm@106 607 // cerr << chordchange[iFrame] << endl;
matthiasm@107 608 fsOut[m_outputLoglikelihood].push_back(loglikelihood);
matthiasm@106 609 }
matthiasm@106 610 logscale /= nFrame;
mail@111 611 // cerr << "loglik" << logscale << endl;
matthiasm@106 612
matthiasm@106 613
matthiasm@43 614 // cerr << chordpath[0] << endl;
matthiasm@43 615 } else {
matthiasm@43 616 /* Simple chord estimation
matthiasm@43 617 I just take the local chord estimates ("currentChordSalience") and average them over time, then
matthiasm@43 618 take the maximum. Very simple, don't do this at home...
matthiasm@43 619 */
matthiasm@44 620 cerr << "[Chordino Plugin] Simple Chord Estimation ... ";
matthiasm@43 621 count = 0;
matthiasm@43 622 int halfwindowlength = m_inputSampleRate / m_stepSize;
matthiasm@43 623 vector<int> chordSequence;
matthiasm@43 624 for (vector<Vamp::RealTime>::iterator it = timestamps.begin(); it != timestamps.end(); ++it) { // initialise the score chordogram
matthiasm@43 625 vector<int> temp = vector<int>(nChord,0);
matthiasm@43 626 scoreChordogram.push_back(temp);
matthiasm@43 627 }
matthiasm@43 628 for (vector<Vamp::RealTime>::iterator it = timestamps.begin(); it < timestamps.end()-2*halfwindowlength-1; ++it) {
matthiasm@43 629 int startIndex = count + 1;
matthiasm@43 630 int endIndex = count + 2 * halfwindowlength;
matthiasm@43 631
matthiasm@43 632 float chordThreshold = 2.5/nChord;//*(2*halfwindowlength+1);
matthiasm@43 633
matthiasm@43 634 vector<int> chordCandidates;
Chris@91 635 for (int iChord = 0; iChord+1 < nChord; iChord++) {
matthiasm@43 636 // float currsum = 0;
Chris@91 637 // for (int iFrame = startIndex; iFrame < endIndex; ++iFrame) {
matthiasm@43 638 // currsum += chordogram[iFrame][iChord];
matthiasm@43 639 // }
matthiasm@43 640 // if (currsum > chordThreshold) chordCandidates.push_back(iChord);
Chris@91 641 for (int iFrame = startIndex; iFrame < endIndex; ++iFrame) {
matthiasm@43 642 if (chordogram[iFrame][iChord] > chordThreshold) {
matthiasm@43 643 chordCandidates.push_back(iChord);
matthiasm@43 644 break;
matthiasm@43 645 }
Chris@23 646 }
Chris@23 647 }
matthiasm@43 648 chordCandidates.push_back(nChord-1);
matthiasm@43 649 // cerr << chordCandidates.size() << endl;
matthiasm@43 650
matthiasm@43 651 float maxval = 0; // will be the value of the most salient *chord change* in this frame
matthiasm@43 652 float maxindex = 0; //... and the index thereof
Chris@91 653 int bestchordL = nChord-1; // index of the best "left" chord
Chris@91 654 int bestchordR = nChord-1; // index of the best "right" chord
matthiasm@43 655
matthiasm@43 656 for (int iWF = 1; iWF < 2*halfwindowlength; ++iWF) {
matthiasm@43 657 // now find the max values on both sides of iWF
matthiasm@43 658 // left side:
matthiasm@43 659 float maxL = 0;
Chris@91 660 int maxindL = nChord-1;
Chris@91 661 for (int kChord = 0; kChord < (int)chordCandidates.size(); kChord++) {
Chris@91 662 int iChord = chordCandidates[kChord];
matthiasm@43 663 float currsum = 0;
Chris@91 664 for (int iFrame = 0; iFrame < iWF-1; ++iFrame) {
matthiasm@43 665 currsum += chordogram[count+iFrame][iChord];
matthiasm@43 666 }
matthiasm@43 667 if (iChord == nChord-1) currsum *= 0.8;
matthiasm@43 668 if (currsum > maxL) {
matthiasm@43 669 maxL = currsum;
matthiasm@43 670 maxindL = iChord;
matthiasm@43 671 }
matthiasm@43 672 }
matthiasm@43 673 // right side:
matthiasm@43 674 float maxR = 0;
Chris@91 675 int maxindR = nChord-1;
Chris@91 676 for (int kChord = 0; kChord < (int)chordCandidates.size(); kChord++) {
Chris@91 677 int iChord = chordCandidates[kChord];
matthiasm@43 678 float currsum = 0;
Chris@91 679 for (int iFrame = iWF-1; iFrame < 2*halfwindowlength; ++iFrame) {
matthiasm@43 680 currsum += chordogram[count+iFrame][iChord];
matthiasm@43 681 }
matthiasm@43 682 if (iChord == nChord-1) currsum *= 0.8;
matthiasm@43 683 if (currsum > maxR) {
matthiasm@43 684 maxR = currsum;
matthiasm@43 685 maxindR = iChord;
matthiasm@43 686 }
matthiasm@43 687 }
matthiasm@43 688 if (maxL+maxR > maxval) {
matthiasm@43 689 maxval = maxL+maxR;
matthiasm@43 690 maxindex = iWF;
matthiasm@43 691 bestchordL = maxindL;
matthiasm@43 692 bestchordR = maxindR;
matthiasm@43 693 }
matthiasm@43 694
Chris@23 695 }
matthiasm@43 696 // cerr << "maxindex: " << maxindex << ", bestchordR is " << bestchordR << ", of frame " << count << endl;
matthiasm@43 697 // add a score to every chord-frame-point that was part of a maximum
Chris@91 698 for (int iFrame = 0; iFrame < maxindex-1; ++iFrame) {
matthiasm@43 699 scoreChordogram[iFrame+count][bestchordL]++;
matthiasm@43 700 }
Chris@91 701 for (int iFrame = maxindex-1; iFrame < 2*halfwindowlength; ++iFrame) {
matthiasm@43 702 scoreChordogram[iFrame+count][bestchordR]++;
matthiasm@43 703 }
matthiasm@50 704 if (bestchordL != bestchordR) {
matthiasm@50 705 chordchange[maxindex+count] += (halfwindowlength - abs(maxindex-halfwindowlength)) * 2.0 / halfwindowlength;
matthiasm@50 706 }
matthiasm@43 707 count++;
Chris@23 708 }
matthiasm@43 709 // cerr << "******* agent finished *******" << endl;
matthiasm@43 710 count = 0;
matthiasm@43 711 for (vector<Vamp::RealTime>::iterator it = timestamps.begin(); it != timestamps.end(); ++it) {
matthiasm@43 712 float maxval = 0; // will be the value of the most salient chord in this frame
matthiasm@43 713 float maxindex = 0; //... and the index thereof
Chris@91 714 for (int iChord = 0; iChord < nChord; iChord++) {
matthiasm@43 715 if (scoreChordogram[count][iChord] > maxval) {
matthiasm@43 716 maxval = scoreChordogram[count][iChord];
matthiasm@43 717 maxindex = iChord;
matthiasm@43 718 // cerr << iChord << endl;
matthiasm@43 719 }
matthiasm@43 720 }
matthiasm@43 721 chordSequence.push_back(maxindex);
matthiasm@43 722 count++;
Chris@23 723 }
matthiasm@43 724
matthiasm@43 725
matthiasm@43 726 // mode filter on chordSequence
matthiasm@43 727 count = 0;
matthiasm@43 728 string oldChord = "";
matthiasm@43 729 for (vector<Vamp::RealTime>::iterator it = timestamps.begin(); it != timestamps.end(); ++it) {
matthiasm@43 730 Feature chord_feature; // chord estimate
matthiasm@43 731 chord_feature.hasTimestamp = true;
matthiasm@43 732 chord_feature.timestamp = *it;
matthiasm@43 733 // Feature currentChord; // chord estimate
matthiasm@43 734 // currentChord.hasTimestamp = true;
matthiasm@43 735 // currentChord.timestamp = currentChromas.timestamp;
matthiasm@43 736
matthiasm@43 737 vector<int> chordCount = vector<int>(nChord,0);
matthiasm@43 738 int maxChordCount = 0;
matthiasm@43 739 int maxChordIndex = nChord-1;
matthiasm@43 740 string maxChord;
matthiasm@43 741 int startIndex = max(count - halfwindowlength/2,0);
matthiasm@43 742 int endIndex = min(int(chordogram.size()), count + halfwindowlength/2);
matthiasm@43 743 for (int i = startIndex; i < endIndex; i++) {
matthiasm@43 744 chordCount[chordSequence[i]]++;
matthiasm@43 745 if (chordCount[chordSequence[i]] > maxChordCount) {
matthiasm@43 746 // cerr << "start index " << startIndex << endl;
matthiasm@43 747 maxChordCount++;
matthiasm@43 748 maxChordIndex = chordSequence[i];
matthiasm@43 749 maxChord = m_chordnames[maxChordIndex];
matthiasm@43 750 }
matthiasm@43 751 }
matthiasm@43 752 // chordSequence[count] = maxChordIndex;
matthiasm@43 753 // cerr << maxChordIndex << endl;
matthiasm@50 754 // cerr << chordchange[count] << endl;
matthiasm@43 755 if (oldChord != maxChord) {
matthiasm@43 756 oldChord = maxChord;
matthiasm@43 757 chord_feature.label = m_chordnames[maxChordIndex];
mail@60 758 fsOut[m_outputChords].push_back(chord_feature);
Chris@91 759 for (int iNote = 0; iNote < (int)oldnotes.size(); ++iNote) { // finish duration of old chord
matthiasm@86 760 oldnotes[iNote].duration = oldnotes[iNote].duration + chord_feature.timestamp;
matthiasm@86 761 fsOut[m_outputChordnotes].push_back(oldnotes[iNote]);
matthiasm@86 762 }
matthiasm@86 763 oldnotes.clear();
Chris@91 764 for (int iNote = 0; iNote < (int)m_chordnotes[maxChordIndex].size(); ++iNote) { // prepare notes of current chord
matthiasm@86 765 Feature chordnote_feature;
matthiasm@86 766 chordnote_feature.hasTimestamp = true;
matthiasm@86 767 chordnote_feature.timestamp = chord_feature.timestamp;
matthiasm@86 768 chordnote_feature.values.push_back(m_chordnotes[maxChordIndex][iNote]);
matthiasm@86 769 chordnote_feature.hasDuration = true;
matthiasm@86 770 chordnote_feature.duration = -chord_feature.timestamp; // this will be corrected at the next chord
matthiasm@86 771 oldnotes.push_back(chordnote_feature);
matthiasm@86 772 }
matthiasm@43 773 }
matthiasm@43 774 count++;
Chris@23 775 }
Chris@23 776 }
matthiasm@43 777 Feature chord_feature; // last chord estimate
matthiasm@43 778 chord_feature.hasTimestamp = true;
matthiasm@43 779 chord_feature.timestamp = timestamps[timestamps.size()-1];
matthiasm@43 780 chord_feature.label = "N";
mail@60 781 fsOut[m_outputChords].push_back(chord_feature);
matthiasm@86 782
Chris@91 783 for (int iNote = 0; iNote < (int)oldnotes.size(); ++iNote) { // finish duration of old chord
matthiasm@86 784 oldnotes[iNote].duration = oldnotes[iNote].duration + timestamps[timestamps.size()-1];
matthiasm@86 785 fsOut[m_outputChordnotes].push_back(oldnotes[iNote]);
matthiasm@86 786 }
matthiasm@86 787
Chris@23 788 cerr << "done." << endl;
matthiasm@50 789
matthiasm@50 790 for (int iFrame = 0; iFrame < nFrame; iFrame++) {
matthiasm@50 791 Feature chordchange_feature;
matthiasm@50 792 chordchange_feature.hasTimestamp = true;
matthiasm@50 793 chordchange_feature.timestamp = timestamps[iFrame];
matthiasm@50 794 chordchange_feature.values.push_back(chordchange[iFrame]);
mail@60 795 // cerr << chordchange[iFrame] << endl;
mail@60 796 fsOut[m_outputHarmonicChange].push_back(chordchange_feature);
matthiasm@50 797 }
matthiasm@50 798
mail@60 799 // for (int iFrame = 0; iFrame < nFrame; iFrame++) cerr << fsOut[m_outputHarmonicChange][iFrame].values[0] << endl;
matthiasm@50 800
matthiasm@50 801
Chris@23 802 return fsOut;
matthiasm@0 803 }