Mercurial > hg > mauch-mirex-2010
view _beattracker/bcfm.m @ 9:4ea6619cb3f5 tip
removed log files
author | matthiasm |
---|---|
date | Fri, 11 Apr 2014 15:55:11 +0100 |
parents | b5b38998ef3b |
children |
line wrap: on
line source
function [measures,db] = bcfm(bcf,beats,timesig) if timesig == 0 timesig =4; end % extract measures from bcf and timesig. for k=1:timesig, db(k) = mean(bcf(k:timesig:end)); end [val,downbeat] = max(db); if(downbeat ==timesig), downbeat = 0; end downbeat = downbeat+1; measures = beats(downbeat:timesig:end); if 0 % for extracting batchwise measures... for i=1:222, meas{1,i} = bcfm(bcfs{i}.spec,anns.beats{i},anns.timesig{i}); % meas{2,i} = bcfm(bcf{i}.specs,anns.beats{i},anns.timesig{i}); meas{2,i} = bcfm(bcfs{i}.cq,anns.beats{i},anns.timesig{i}); % meas{4,i} = bcfm(bcf{i}.cqs,anns.beats{i},anns.timesig{i}); meas{3,i} = bcfm(bcfs{i}.hpcp,anns.beats{i},anns.timesig{i}); % meas{6,i} = bcfm(bcf{i}.hpcps,anns.beats{i},anns.timesig{i}); meas{4,i} = bcfm(bcfs{i}.chroma,anns.beats{i},anns.timesig{i}); % meas{8,i} = bcfm(bcf{i}.chromas,anns.beats{i},anns.timesig{i}); meas{5,i} = bcfm(bcfs{i}.mfcc,anns.beats{i},anns.timesig{i}); % y = bcfs{i}.spec+bcfs{i}.cq+bcfs{i}.hpcp+bcfs{i}.chroma+bcfs{i}.mfcc; % meas{6,i} = bcfm(y,anns.beats{i},anns.timesig{i}); % % voting mechanism.. find which measures are the same... % zz = zeros(5); % for k=1:5, % for j=1:5, % zz(k,j) = double(~~sum(meas{k,i}==meas{j,i})); % end % end % % for p=1:5, zz(p,p) = 0; end % % find which is similar to another % [val,ind] = max(sum(zz)); % % and put these in place... % meas{6,i} = meas{ind,i}; % end % and their evaluation for j=1:5 for i=1:222, % only need rcl [m.rcl(j,i), m.rtot(j,i), m.acl(j,i), m.atot(j,i)] = cont_eval(anns.actmeasures{i},meas{j,i},0.1); end end end if 0 % for extracting batchwise measures... for i=1:222, meas{1,i} = bcfm(bcf{i}.spec,beats{i},timesig{i}); % meas{2,i} = bcfm(bcf{i}.specs,anns.beats{i},anns.timesig{i}); meas{2,i} = bcfm(bcf{i}.cq,beats{i},timesig{i}); % meas{4,i} = bcfm(bcf{i}.cqs,anns.beats{i},anns.timesig{i}); meas{3,i} = bcfm(bcf{i}.hpcp,beats{i},timesig{i}); % meas{6,i} = bcfm(bcf{i}.hpcps,anns.beats{i},anns.timesig{i}); meas{4,i} = bcfm(bcf{i}.chroma,beats{i},timesig{i}); % meas{8,i} = bcfm(bcf{i}.chromas,anns.beats{i},anns.timesig{i}); end % and their evaluation for j=1:4 for i=1:222, % only need rcl [m.rcl(j,i), m.rtot(j,i), m.acl(j,i), m.atot(j,i)] = cont_eval(anns.actmeasures{i},meas{j,i},0.1); end end end %new classification approach if 0 fname = '95_HipHopFatty'; [bcf,frame,beats] = getbcfs2(fname); y = kmeans(frame.spec,4); measures = bcfm(~~abs(diff(y)),beats,4); figure(1);subplot(311); imagesc(10*log(1+abs(frame.spec'))); axis xy; colormap('hot'); subplot(312); stem(y); axis tight; subplot(313); stem(~~abs(diff(y))); axis tight; out = playbeats(measures,wavread(fname),44100); wavwrite(out,44100,'~/Desktop/z2.wav'); end