annotate _misc/probability/.svn/text-base/kde.m.svn-base @ 9:4ea6619cb3f5 tip

removed log files
author matthiasm
date Fri, 11 Apr 2014 15:55:11 +0100
parents b5b38998ef3b
children
rev   line source
matthiasm@8 1 function [bandwidth,density,xmesh]=kde(data,n,MIN,MAX)
matthiasm@8 2 % Reliable and extremely fast kernel density estimator for 1 dimensional data;
matthiasm@8 3 % Gaussian kernel is assumed and the bandwidth is chosen automatically;
matthiasm@8 4 %
matthiasm@8 5 % INPUTS:
matthiasm@8 6 % data - a vector of data from which the density estimate is constructed;
matthiasm@8 7 % MIN, MAX - defines the interval [MIN,MAX] on which the density estimate is constructed;
matthiasm@8 8 % the default values of MIN and MAX are:
matthiasm@8 9 % MIN=min(data)-Range/100 and MAX=max(data)+Range/100, where Range=max(data)-min(data);
matthiasm@8 10 % n - the number of mesh points used in the uniform discretization of the
matthiasm@8 11 % interval [MIN, MAX]; n has to be a power of two; if n is not a power of two, then
matthiasm@8 12 % n is rounded up to the next power of two, i.e., n is set to n=2^ceil(log2(n));
matthiasm@8 13 % the default value of n is n=2^12;
matthiasm@8 14 % OUTPUTS:
matthiasm@8 15 % bandwidth - the optimal bandwidth (Gaussian kernel assumed);
matthiasm@8 16 % density - column vector of length 'n' with the values of the density
matthiasm@8 17 % estimate at the grid points;
matthiasm@8 18 % xmesh - the grid over which the density estimate is computed;
matthiasm@8 19 % Reference: Botev, Z. I.,
matthiasm@8 20 % "A Novel Nonparametric Density Estimator",Technical Report,The University of Queensland
matthiasm@8 21 % http://espace.library.uq.edu.au/view.php?pid=UQ:12535
matthiasm@8 22 %
matthiasm@8 23 % Example:
matthiasm@8 24 % data=randn(1000,1);
matthiasm@8 25 % [bandwidth,density,xmesh]=kde(data,2^12,min(data)-1,max(data)+1);
matthiasm@8 26 % plot(xmesh,density)
matthiasm@8 27
matthiasm@8 28 data=data(:); %make data a column vector
matthiasm@8 29 if nargin<2 % if n is not supplied switch to the default
matthiasm@8 30 n=2^12;
matthiasm@8 31 end
matthiasm@8 32 n=2^ceil(log2(n)); % round up n to the next power of 2;
matthiasm@8 33
matthiasm@8 34 if nargin<4 %define the default interval [MIN,MAX]
matthiasm@8 35 minimum=min(data); maximum=max(data);
matthiasm@8 36 Range=maximum-minimum;
matthiasm@8 37 MIN=minimum-Range/10; MAX=maximum+Range/10;
matthiasm@8 38 end
matthiasm@8 39 % set up the grid over which the density estimate is computed;
matthiasm@8 40 R=MAX-MIN; dx=R/(n-1); xmesh=MIN+[0:dx:R]; N=length(data);
matthiasm@8 41 %bin the data uniformly using the grid define above;
matthiasm@8 42 initial_data=histc(data,xmesh)/N;
matthiasm@8 43 a=dct1d(initial_data); % discrete cosine transform of initial data
matthiasm@8 44 % now compute the optimal bandwidth^2 using the GCE method
matthiasm@8 45 t_star=gce(a,n,N);
matthiasm@8 46 % smooth the discrete cosine transform of initial data using t_star
matthiasm@8 47 a_t=a.*exp(-[0:n-1]'.^2*pi^2*t_star/2);
matthiasm@8 48 % now apply the inverse discrete cosine transform
matthiasm@8 49 if nargout>1
matthiasm@8 50 density=idct1d(a_t)/R;
matthiasm@8 51 end
matthiasm@8 52 bandwidth=sqrt(t_star)*R;
matthiasm@8 53 end
matthiasm@8 54 function t_star=gce(a,n,N)
matthiasm@8 55 a=a(2:end)/2;
matthiasm@8 56 I=[1:n-1]'.^2;
matthiasm@8 57 a2=a.^2;
matthiasm@8 58 Var_a=zeros(n-1,1);
matthiasm@8 59 Var_a(1:n/2-1)=(1/2+1/2*a(2:2:n-1)-a2(1:n/2-1))/N;
matthiasm@8 60
matthiasm@8 61 t_star=fzero(@mise,[0,1]);
matthiasm@8 62 NORM=2*pi^4*sum(I.^2.*a2.*exp(-I*pi^2*t_star));
matthiasm@8 63 %NORM=.5*pi^4*sum([1:n-1]'.^4.*a_t(2:end).^2)/R^5;
matthiasm@8 64 t_star=[2*N*sqrt(pi)*NORM]^(-2/5);
matthiasm@8 65 function out=mise(t)
matthiasm@8 66
matthiasm@8 67 out=sum((a2+Var_a).*(1-exp(-I*pi^2*t/2)).^2./I)+...
matthiasm@8 68 sqrt(t/pi)/N*(pi^2/2)-sum(Var_a./I);
matthiasm@8 69 end
matthiasm@8 70 end
matthiasm@8 71
matthiasm@8 72 function data=dct1d(data)
matthiasm@8 73 % computes the discrete cosine transform of the column vector data
matthiasm@8 74 [nrows,ncols]= size(data);
matthiasm@8 75 % Compute weights to multiply DFT coefficients
matthiasm@8 76 weight = [1;2*(exp(-i*(1:nrows-1)*pi/(2*nrows))).'];
matthiasm@8 77 % Re-order the elements of the columns of x
matthiasm@8 78 data = [ data(1:2:end,:); data(end:-2:2,:) ];
matthiasm@8 79 % Multiply FFT by weights:
matthiasm@8 80 data= real(weight.* fft(data));
matthiasm@8 81 end
matthiasm@8 82 function out = idct1d(data)
matthiasm@8 83 % computes the inverse discrete cosine transform
matthiasm@8 84 [nrows,ncols]=size(data);
matthiasm@8 85 % Compute weights
matthiasm@8 86 weights = nrows*exp(i*(0:nrows-1)*pi/(2*nrows)).';
matthiasm@8 87 % Compute x tilde using equation (5.93) in Jain
matthiasm@8 88 data = real(ifft(weights.*data));
matthiasm@8 89 % Re-order elements of each column according to equations (5.93) and
matthiasm@8 90 % (5.94) in Jain
matthiasm@8 91 out = zeros(nrows,1);
matthiasm@8 92 out(1:2:nrows) = data(1:nrows/2);
matthiasm@8 93 out(2:2:nrows) = data(nrows:-1:nrows/2+1);
matthiasm@8 94 % Reference:
matthiasm@8 95 % A. K. Jain, "Fundamentals of Digital Image
matthiasm@8 96 % Processing", pp. 150-153.
matthiasm@8 97 end
matthiasm@8 98