Mercurial > hg > mauch-mirex-2010
view _misc/probability/.svn/text-base/kde.m.svn-base @ 8:b5b38998ef3b
added all that other stuff
author | matthiasm |
---|---|
date | Fri, 11 Apr 2014 15:54:25 +0100 |
parents | |
children |
line wrap: on
line source
function [bandwidth,density,xmesh]=kde(data,n,MIN,MAX) % Reliable and extremely fast kernel density estimator for 1 dimensional data; % Gaussian kernel is assumed and the bandwidth is chosen automatically; % % INPUTS: % data - a vector of data from which the density estimate is constructed; % MIN, MAX - defines the interval [MIN,MAX] on which the density estimate is constructed; % the default values of MIN and MAX are: % MIN=min(data)-Range/100 and MAX=max(data)+Range/100, where Range=max(data)-min(data); % n - the number of mesh points used in the uniform discretization of the % interval [MIN, MAX]; n has to be a power of two; if n is not a power of two, then % n is rounded up to the next power of two, i.e., n is set to n=2^ceil(log2(n)); % the default value of n is n=2^12; % OUTPUTS: % bandwidth - the optimal bandwidth (Gaussian kernel assumed); % density - column vector of length 'n' with the values of the density % estimate at the grid points; % xmesh - the grid over which the density estimate is computed; % Reference: Botev, Z. I., % "A Novel Nonparametric Density Estimator",Technical Report,The University of Queensland % http://espace.library.uq.edu.au/view.php?pid=UQ:12535 % % Example: % data=randn(1000,1); % [bandwidth,density,xmesh]=kde(data,2^12,min(data)-1,max(data)+1); % plot(xmesh,density) data=data(:); %make data a column vector if nargin<2 % if n is not supplied switch to the default n=2^12; end n=2^ceil(log2(n)); % round up n to the next power of 2; if nargin<4 %define the default interval [MIN,MAX] minimum=min(data); maximum=max(data); Range=maximum-minimum; MIN=minimum-Range/10; MAX=maximum+Range/10; end % set up the grid over which the density estimate is computed; R=MAX-MIN; dx=R/(n-1); xmesh=MIN+[0:dx:R]; N=length(data); %bin the data uniformly using the grid define above; initial_data=histc(data,xmesh)/N; a=dct1d(initial_data); % discrete cosine transform of initial data % now compute the optimal bandwidth^2 using the GCE method t_star=gce(a,n,N); % smooth the discrete cosine transform of initial data using t_star a_t=a.*exp(-[0:n-1]'.^2*pi^2*t_star/2); % now apply the inverse discrete cosine transform if nargout>1 density=idct1d(a_t)/R; end bandwidth=sqrt(t_star)*R; end function t_star=gce(a,n,N) a=a(2:end)/2; I=[1:n-1]'.^2; a2=a.^2; Var_a=zeros(n-1,1); Var_a(1:n/2-1)=(1/2+1/2*a(2:2:n-1)-a2(1:n/2-1))/N; t_star=fzero(@mise,[0,1]); NORM=2*pi^4*sum(I.^2.*a2.*exp(-I*pi^2*t_star)); %NORM=.5*pi^4*sum([1:n-1]'.^4.*a_t(2:end).^2)/R^5; t_star=[2*N*sqrt(pi)*NORM]^(-2/5); function out=mise(t) out=sum((a2+Var_a).*(1-exp(-I*pi^2*t/2)).^2./I)+... sqrt(t/pi)/N*(pi^2/2)-sum(Var_a./I); end end function data=dct1d(data) % computes the discrete cosine transform of the column vector data [nrows,ncols]= size(data); % Compute weights to multiply DFT coefficients weight = [1;2*(exp(-i*(1:nrows-1)*pi/(2*nrows))).']; % Re-order the elements of the columns of x data = [ data(1:2:end,:); data(end:-2:2,:) ]; % Multiply FFT by weights: data= real(weight.* fft(data)); end function out = idct1d(data) % computes the inverse discrete cosine transform [nrows,ncols]=size(data); % Compute weights weights = nrows*exp(i*(0:nrows-1)*pi/(2*nrows)).'; % Compute x tilde using equation (5.93) in Jain data = real(ifft(weights.*data)); % Re-order elements of each column according to equations (5.93) and % (5.94) in Jain out = zeros(nrows,1); out(1:2:nrows) = data(1:nrows/2); out(2:2:nrows) = data(nrows:-1:nrows/2+1); % Reference: % A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. end