Chris@26
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@26
|
2
|
Chris@26
|
3 /*
|
Chris@26
|
4 Vamp feature extraction plugin using the MATCH audio alignment
|
Chris@26
|
5 algorithm.
|
Chris@26
|
6
|
Chris@26
|
7 Centre for Digital Music, Queen Mary, University of London.
|
Chris@26
|
8 This file copyright 2007 Simon Dixon, Chris Cannam and QMUL.
|
Chris@26
|
9
|
Chris@26
|
10 This program is free software; you can redistribute it and/or
|
Chris@26
|
11 modify it under the terms of the GNU General Public License as
|
Chris@26
|
12 published by the Free Software Foundation; either version 2 of the
|
Chris@26
|
13 License, or (at your option) any later version. See the file
|
Chris@26
|
14 COPYING included with this distribution for more information.
|
Chris@26
|
15 */
|
Chris@26
|
16
|
Chris@26
|
17 #include "DistanceMetric.h"
|
Chris@26
|
18
|
Chris@26
|
19 #include <cassert>
|
Chris@26
|
20 #include <cmath>
|
Chris@133
|
21 #include <iostream>
|
Chris@26
|
22
|
Chris@133
|
23 using namespace std;
|
Chris@26
|
24
|
Chris@140
|
25 //#define DEBUG_DISTANCE_METRIC 1
|
Chris@140
|
26
|
Chris@185
|
27 template <> uint8_t
|
Chris@185
|
28 DistanceMetric::scaleIntoRange(double distance)
|
Chris@185
|
29 {
|
Chris@185
|
30 return uint8_t(m_params.scale * distance);
|
Chris@185
|
31 }
|
Chris@185
|
32
|
Chris@185
|
33 template <> float
|
Chris@185
|
34 DistanceMetric::scaleIntoRange(double distance)
|
Chris@185
|
35 {
|
Chris@185
|
36 return float(distance);
|
Chris@185
|
37 }
|
Chris@185
|
38
|
Chris@185
|
39 template <> double
|
Chris@185
|
40 DistanceMetric::scaleIntoRange(double distance)
|
Chris@185
|
41 {
|
Chris@185
|
42 return distance;
|
Chris@185
|
43 }
|
Chris@185
|
44
|
Chris@143
|
45 DistanceMetric::DistanceMetric(Parameters params) :
|
Chris@143
|
46 m_params(params)
|
Chris@140
|
47 {
|
Chris@140
|
48 #ifdef DEBUG_DISTANCE_METRIC
|
Chris@143
|
49 cerr << "*** DistanceMetric: norm = " << m_params.norm
|
Chris@143
|
50 << endl;
|
Chris@140
|
51 #endif
|
Chris@140
|
52 }
|
Chris@140
|
53
|
Chris@183
|
54 distance_t
|
Chris@183
|
55 DistanceMetric::calcDistance(const feature_t &f1,
|
Chris@183
|
56 const feature_t &f2)
|
Chris@26
|
57 {
|
Chris@26
|
58 double d = 0;
|
Chris@26
|
59 double sum = 0;
|
Chris@156
|
60 double eps = 1e-16;
|
Chris@26
|
61
|
Chris@180
|
62 assert(f2.size() == f1.size());
|
Chris@180
|
63 int featureSize = static_cast<int>(f1.size());
|
Chris@145
|
64
|
Chris@156
|
65 if (m_params.metric == Cosine) {
|
Chris@156
|
66
|
Chris@156
|
67 double num = 0, denom1 = 0, denom2 = 0;
|
Chris@156
|
68
|
Chris@156
|
69 for (int i = 0; i < featureSize; ++i) {
|
Chris@156
|
70 num += f1[i] * f2[i];
|
Chris@156
|
71 denom1 += f1[i] * f1[i];
|
Chris@156
|
72 denom2 += f2[i] * f2[i];
|
Chris@156
|
73 }
|
Chris@156
|
74
|
Chris@156
|
75 d = 1.0 - (num / (eps + sqrt(denom1 * denom2)));
|
Chris@156
|
76
|
Chris@156
|
77 if (m_params.noise == AddNoise) {
|
Chris@156
|
78 d += 1e-2;
|
Chris@156
|
79 }
|
Chris@156
|
80 if (d > 1.0) d = 1.0;
|
Chris@156
|
81
|
Chris@185
|
82 return scaleIntoRange<distance_t>(d); // normalisation param ignored
|
Chris@156
|
83 }
|
Chris@156
|
84
|
Chris@157
|
85 if (m_params.metric == Manhattan) {
|
Chris@157
|
86 for (int i = 0; i < featureSize; i++) {
|
Chris@157
|
87 d += fabs(f1[i] - f2[i]);
|
Chris@157
|
88 sum += fabs(f1[i]) + fabs(f2[i]);
|
Chris@157
|
89 }
|
Chris@157
|
90 } else {
|
Chris@157
|
91 // Euclidean
|
Chris@157
|
92 for (int i = 0; i < featureSize; i++) {
|
Chris@157
|
93 d += (f1[i] - f2[i]) * (f1[i] - f2[i]);
|
Chris@157
|
94 sum += fabs(f1[i]) + fabs(f2[i]);
|
Chris@157
|
95 }
|
Chris@157
|
96 d = sqrt(d);
|
Chris@26
|
97 }
|
Chris@26
|
98
|
Chris@145
|
99 double noise = 1e-3 * featureSize;
|
Chris@150
|
100 if (m_params.noise == AddNoise) {
|
Chris@150
|
101 d += noise;
|
Chris@150
|
102 sum += noise;
|
Chris@150
|
103 }
|
Chris@145
|
104
|
Chris@143
|
105 if (sum == 0) {
|
Chris@185
|
106 return scaleIntoRange<distance_t>(0);
|
Chris@143
|
107 }
|
Chris@26
|
108
|
Chris@143
|
109 double distance = 0;
|
Chris@26
|
110
|
Chris@143
|
111 if (m_params.norm == NormaliseDistanceToSum) {
|
Chris@143
|
112
|
Chris@143
|
113 distance = d / sum; // 0 <= d/sum <= 2
|
Chris@143
|
114
|
Chris@143
|
115 } else if (m_params.norm == NormaliseDistanceToLogSum) {
|
Chris@143
|
116
|
Chris@143
|
117 // note if this were to be restored, it would have to use
|
Chris@143
|
118 // totalEnergies vector instead of f1[freqMapSize] which used to
|
Chris@143
|
119 // store the total energy:
|
Chris@143
|
120 // double weight = (5 + Math.log(f1[freqMapSize] + f2[freqMapSize]))/10.0;
|
Chris@143
|
121
|
Chris@143
|
122 double weight = (8 + log(sum)) / 10.0;
|
Chris@133
|
123
|
Chris@143
|
124 if (weight < 0) weight = 0;
|
Chris@143
|
125 else if (weight > 1) weight = 1;
|
Chris@26
|
126
|
Chris@143
|
127 distance = d / sum * weight;
|
Chris@143
|
128
|
Chris@143
|
129 } else {
|
Chris@143
|
130
|
Chris@143
|
131 distance = d;
|
Chris@143
|
132 }
|
Chris@143
|
133
|
Chris@185
|
134 return scaleIntoRange<distance_t>(distance);
|
Chris@26
|
135 }
|