annotate help_html/source/help_Index.m @ 38:c7d11a428a0d tip master

Merge branch 'develop' * develop: Updated copyright year.
author Christopher Hummersone <c.hummersone@surrey.ac.uk>
date Tue, 16 May 2017 12:15:34 +0100
parents 8f36d7072f2f
children
rev   line source
c@0 1 %% Multichannel audio source separation evaluation framework (MASSEF)
c@0 2 %
c@0 3 %% Overview
c@0 4 %
c@8 5 % <<../MASSEF.png>>
c@8 6 %
c@0 7 % The multichannel audio source separation evaluation framework is designed
c@9 8 % to facilitate the development and evaluation of audio source separation
c@9 9 % algorithms. The framework generates the mixture(s), provides the
c@9 10 % mixture(s) to the separation algorithm(s), and evaluates the outputs of
c@9 11 % the separation algorithm(s). The framework can also calculate and
c@9 12 % evaluate the ideal masks for the purposes of comparison.
c@0 13 %
c@0 14 % Sources may have any number of channels; the framework evaluates each
c@14 15 % channel. The use of <matlab:doc('iosr.bss.mixture') |iosr.bss.mixture|>
c@14 16 % objects facilitate the evaluation of spatialised mixtures (e.g.
c@14 17 % binaural).
c@0 18 %
c@0 19 % The framework comprises two main classes:
c@0 20 %
c@0 21 % * <help_MASSEF.html MASSEF>&mdash;multichannel audio source separation
c@0 22 % evaluation framework class.
c@0 23 % * <help_MASSEFresults.html MASSEFresults>&mdash;the results class used by
c@0 24 % MASSEF.
c@0 25 %
c@0 26 % <help_Example.html View an example of the use of these classes.>
c@0 27 %
c@0 28 % MASSEF can be used to evaluate and compare binaural separation algorithms,
c@0 29 % provided that the algorithms conform to the <help_Separators.html
c@0 30 % required format>.
c@0 31 %
c@0 32 %% Installation
c@0 33 %
c@0 34 % Before using the framework, you need to download and install its
c@0 35 % dependencies. This can be done automatically using the
c@9 36 % <help_MASSEF_install.html MASSEF.install()> method. Before each session,
c@0 37 % MASSEF needs to be started using the <help_MASSEF_start.html
c@9 38 % MASSEF.start()> method.
c@0 39 %
c@0 40 %% Usage
c@0 41 %
c@0 42 % The framework can be run in two ways:
c@0 43 %
c@14 44 % # by providing <matlab:doc('iosr.bss.mixture') |iosr.bss.mixture|>
c@14 45 % objects and separation algorithms, or
c@0 46 % # by providing estimate and true source wav files.
c@0 47 %
c@9 48 % If 1), the framework operates as described above. In addition, the
c@9 49 % framework can:
c@9 50 %
c@9 51 % * evaluate localisation accuracy (if the algorithm performs localisation)
c@9 52 % of any azimuth/elevation estimates returned by the algorithm, and
c@9 53 % * evaluate time-frequency mask accuracy (if the algorithm calculates
c@9 54 % one).
c@9 55 %
c@9 56 % Use the <help_MASSEF_execute.html MASSEF.execute()> method to operate in
c@9 57 % this mode.
c@0 58 %
c@0 59 % If 2), the framework evaluates only the supplied estimate(s) using
c@9 60 % signal-related metrics. Use the <help_MASSEF_evaluate.html
c@9 61 % MASSEF.evaluate()> method to operate in this mode.
c@0 62 %
c@0 63 % <html>
c@0 64 % <hr>
c@37 65 % <p>Copyright &copy; 2017 <a href="http://www.surrey.ac.uk">University of Surrey</a><br>
c@0 66 % <a href="http://iosr.uk">Institute of Sound Recording, University of Surrey, UK</a></p>
c@0 67 % </html>