annotate help_html/source/help_Index.m @ 9:063175bfe283

Minor updates to documentation.
author Christopher Hummersone <c.hummersone@surrey.ac.uk>
date Fri, 03 Mar 2017 10:36:11 +0000
parents 3c754d051479
children aea77872f608
rev   line source
c@0 1 %% Multichannel audio source separation evaluation framework (MASSEF)
c@0 2 %
c@0 3 %% Overview
c@0 4 %
c@8 5 % <<../MASSEF.png>>
c@8 6 %
c@0 7 % The multichannel audio source separation evaluation framework is designed
c@9 8 % to facilitate the development and evaluation of audio source separation
c@9 9 % algorithms. The framework generates the mixture(s), provides the
c@9 10 % mixture(s) to the separation algorithm(s), and evaluates the outputs of
c@9 11 % the separation algorithm(s). The framework can also calculate and
c@9 12 % evaluate the ideal masks for the purposes of comparison.
c@0 13 %
c@0 14 % Sources may have any number of channels; the framework evaluates each
c@0 15 % channel. The use of iosr.bss.mixture objects facilitate the evaluation of
c@0 16 % spatialised mixtures (e.g. binaural).
c@0 17 %
c@0 18 % The framework comprises two main classes:
c@0 19 %
c@0 20 % * <help_MASSEF.html MASSEF>&mdash;multichannel audio source separation
c@0 21 % evaluation framework class.
c@0 22 % * <help_MASSEFresults.html MASSEFresults>&mdash;the results class used by
c@0 23 % MASSEF.
c@0 24 %
c@0 25 % <help_Example.html View an example of the use of these classes.>
c@0 26 %
c@0 27 % MASSEF can be used to evaluate and compare binaural separation algorithms,
c@0 28 % provided that the algorithms conform to the <help_Separators.html
c@0 29 % required format>.
c@0 30 %
c@0 31 %% Installation
c@0 32 %
c@0 33 % Before using the framework, you need to download and install its
c@0 34 % dependencies. This can be done automatically using the
c@9 35 % <help_MASSEF_install.html MASSEF.install()> method. Before each session,
c@0 36 % MASSEF needs to be started using the <help_MASSEF_start.html
c@9 37 % MASSEF.start()> method.
c@0 38 %
c@0 39 %% Usage
c@0 40 %
c@0 41 % The framework can be run in two ways:
c@0 42 %
c@0 43 % # by providing |iosr.bss.mixture| objects and separation algorithms, or
c@0 44 % # by providing estimate and true source wav files.
c@0 45 %
c@9 46 % If 1), the framework operates as described above. In addition, the
c@9 47 % framework can:
c@9 48 %
c@9 49 % * evaluate localisation accuracy (if the algorithm performs localisation)
c@9 50 % of any azimuth/elevation estimates returned by the algorithm, and
c@9 51 % * evaluate time-frequency mask accuracy (if the algorithm calculates
c@9 52 % one).
c@9 53 %
c@9 54 % Use the <help_MASSEF_execute.html MASSEF.execute()> method to operate in
c@9 55 % this mode.
c@0 56 %
c@0 57 % If 2), the framework evaluates only the supplied estimate(s) using
c@9 58 % signal-related metrics. Use the <help_MASSEF_evaluate.html
c@9 59 % MASSEF.evaluate()> method to operate in this mode.
c@0 60 %
c@0 61 % <html>
c@0 62 % <hr>
c@0 63 % <p>Copyright &copy; 2016 <a href="http://www.surrey.ac.uk">University of Surrey</a><br>
c@0 64 % <a href="http://iosr.uk">Institute of Sound Recording, University of Surrey, UK</a></p>
c@0 65 % </html>