Mercurial > hg > map
view userProgramsTim/Pavel_MAP1_14.m @ 38:c2204b18f4a2 tip
End nov big change
author | Ray Meddis <rmeddis@essex.ac.uk> |
---|---|
date | Mon, 28 Nov 2011 13:34:28 +0000 |
parents | |
children |
line wrap: on
line source
function Pavel_MAP1_14 % test_MAP1_14 is a general purpose test routine that can be adjusted to % test a number of different applications of MAP1_14 % % A range of options are supplied in the early part of the program % % One use of the function is to create demonstrations; filenames <demoxx> % to illustrate particular features % % #1 % Identify the file (in 'MAPparamsName') containing the model parameters % % #2 % Identify the kind of model required (in 'AN_spikesOrProbability'). % A full brainstem model (spikes) can be computed or a shorter model % (probability) that computes only so far as the auditory nerve % % #3 % Choose between a tone signal or file input (in 'signalType') % % #4 % Set the signal rms level (in leveldBSPL) % % #5 % Identify the channels in terms of their best frequencies in the vector % BFlist. % % Last minute changes to the parameters fetched earlier can be made using % the cell array of strings 'paramChanges'. % Each string must have the same format as the corresponding line in the % file identified in 'MAPparamsName' % % When the demonstration is satisfactory, freeze it by renaming it <demoxx> restorePath=path; addpath (['..' filesep 'MAP'], ['..' filesep 'wavFileStore'], ... ['..' filesep 'utilities']) %% #1 parameter file name MAPparamsName='Normal'; %% #2 probability (fast) or spikes (slow) representation AN_spikesOrProbability='spikes'; % or % AN_spikesOrProbability='probability'; % NB probabilities are not corrected for refractory effects %% #3 pure tone, harmonic sequence or speech file input signalType= 'tones'; sampleRate= 100000; duration=0.1; % seconds % toneFrequency= 250:250:8000; % harmonic sequence (Hz) toneFrequency= 1000; % or a pure tone (Hz8 rampDuration=.005; % seconds % or % signalType= 'file'; % fileName='twister_44kHz'; %% #4 rms level % signal details leveldBSPL= 30; % dB SPL %% #5 number of channels in the model % 21-channel model (log spacing) % numChannels=21; % lowestBF=250; highestBF= 8000; % BFlist=round(logspace(log10(lowestBF), log10(highestBF), numChannels)); % or specify your own channel BFs numChannels=1; BFlist=toneFrequency; %% #6 change model parameters paramChanges=[]; % or % Parameter changes can be used to change one or more model parameters % *after* the MAPparams file has been read % This example declares only one fiber type with a calcium clearance time % constant of 80e-6 s (HSR fiber) when the probability option is selected. % It also removes the speed up that normally takes place for AN spikes % It also increases the number of AN fibers computed to 500. paramChanges={... 'AN_IHCsynapseParams.ANspeedUpFactor=1;', ... 'IHCpreSynapseParams.tauCa=86e-6;',... 'AN_IHCsynapseParams.numFibers= 500;' }; %% delare 'showMap' options to control graphical output global showMapOptions % or (example: show everything including an smoothed SACF output showMapOptions.printModelParameters=1; % prints all parameters showMapOptions.showModelOutput=1; % plot of all stages showMapOptions.printFiringRates=1; % prints stage activity levels showMapOptions.showACF=0; % shows SACF (probability only) showMapOptions.showEfferent=0; % tracks of AR and MOC showMapOptions.surfProbability=0; % 2D plot of HSR response if strcmp(AN_spikesOrProbability, 'spikes') % avoid nonsensical options showMapOptions.surfProbability=0; showMapOptions.showACF=0; end if strcmp(signalType, 'file') % needed for labeling plot showMapOptions.fileName=fileName; else showMapOptions.fileName=[]; end %% Generate stimuli dbstop if error restorePath=path; addpath (['..' filesep 'MAP'], ['..' filesep 'wavFileStore']) switch signalType case 'tones' inputSignal=createMultiTone(sampleRate, toneFrequency, ... leveldBSPL, duration, rampDuration); case 'file' %% file input simple or mixed [inputSignal sampleRate]=wavread(fileName); dt=1/sampleRate; inputSignal=inputSignal(:,1); targetRMS=20e-6*10^(leveldBSPL/20); rms=(mean(inputSignal.^2))^0.5; amp=targetRMS/rms; inputSignal=inputSignal*amp; silence= zeros(1,round(0.1/dt)); inputSignal= [silence inputSignal' silence]; end %% run the model tic fprintf('\n') disp(['Signal duration= ' num2str(length(inputSignal)/sampleRate)]) disp([num2str(numChannels) ' channel model']) disp('Computing ...') MAP1_14(inputSignal, sampleRate, BFlist, ... MAPparamsName, AN_spikesOrProbability, paramChanges); toc % the model run is now complete. Now display the results % the model run is now complete. Now display the results disp(' param changes to list of parameters below') for i=1:length(paramChanges) disp(paramChanges{i}) end UTIL_showMAP(showMapOptions) toc path(restorePath) function inputSignal=createMultiTone(sampleRate, toneFrequency, ... leveldBSPL, duration, rampDuration) % Create pure tone stimulus dt=1/sampleRate; % seconds time=dt: dt: duration; inputSignal=sum(sin(2*pi*toneFrequency'*time), 1); amp=10^(leveldBSPL/20)*28e-6; % converts to Pascals (peak) inputSignal=amp*inputSignal; % apply ramps % catch rampTime error if rampDuration>0.5*duration, rampDuration=duration/2; end rampTime=dt:dt:rampDuration; ramp=[0.5*(1+cos(2*pi*rampTime/(2*rampDuration)+pi)) ... ones(1,length(time)-length(rampTime))]; inputSignal=inputSignal.*ramp; ramp=fliplr(ramp); inputSignal=inputSignal.*ramp; % add 10 ms silence silence= zeros(1,round(0.03/dt)); inputSignal= [silence inputSignal silence];