Mercurial > hg > map
view testPrograms/runMAP1_14.m @ 38:c2204b18f4a2 tip
End nov big change
author | Ray Meddis <rmeddis@essex.ac.uk> |
---|---|
date | Mon, 28 Nov 2011 13:34:28 +0000 |
parents | |
children |
line wrap: on
line source
function runMAP1_14 % runMAP1_14 is a general purpose test routine that can be adjusted to % explore different applications of MAP1_14 % % It is also designed as 'starter' code for building new applications. % % A range of options are supplied in the early part of the program % % #1 % Identify the file (in 'MAPparamsName') containing the model parameters % % #2 % Identify the kind of model required (in 'AN_spikesOrProbability'). % A full brainstem model ('spikes') can be computed or a shorter model % ('probability') that computes only so far as the auditory nerve % % #3 % Choose between a tone signal or file input (in 'signalType') % % #4 % Set the signal rms level (in leveldBSPL) % % #5 % Identify the channels in terms of their best frequencies in the vector % BFlist. % % #6 % Last minute changes to the model parameters can be made using % a cell array of strings, 'paramChanges'. dbstop if error restorePath=path; addpath (['..' filesep 'MAP'], ['..' filesep 'wavFileStore'], ... ['..' filesep 'utilities']) %% #1 parameter file name MAPparamsName='Normal'; %% #2 probability (fast) or spikes (slow) representation: select one % AN_spikesOrProbability='spikes'; % or AN_spikesOrProbability='probability'; %% #3 A. pure tone, B. harmonic sequence or C. speech file input % comment out unwanted code % A. tone sampleRate= 95000; signalType= 'tones'; toneFrequency= 1000; % or a pure tone (Hz) duration=0.500; % seconds beginSilence=0.010; endSilence=0.020; rampDuration=.005; % raised cosine ramp (seconds) % or % B. harmonic tone (Hz) - useful to demonstrate a broadband sound % sampleRate= 44100; % signalType= 'tones'; % toneFrequency= F0:F0:8000; % duration=0.500; % seconds % beginSilence=0.250; % endSilence=0.250; % F0=210; % rampDuration=.005; % raised cosine ramp (seconds) % or % C. signalType= 'file'; % fileName='twister_44kHz'; %% #4 rms level % signal details leveldBSPL= 80; % dB SPL (80 for Lieberman) %% #5 number of channels in the model % 21-channel model (log spacing) numChannels=21; lowestBF=100; highestBF= 6000; BFlist=round(logspace(log10(lowestBF), log10(highestBF), numChannels)); % or specify your own channel BFs % numChannels=1; % BFlist=toneFrequency; %% #6 change model parameters paramChanges={}; % no changes % Parameter changes can be used to change one or more model parameters % *after* the MAPparams file has been read % Each string must have the same format as the corresponding line in the % file identified in 'MAPparamsName' % This example declares only one fiber type with a calcium clearance time % constant of 80e-6 s (HSR fiber) when the probability option is selected. % paramChanges={'AN_IHCsynapseParams.ANspeedUpFactor=5;', ... % 'IHCpreSynapseParams.tauCa=86e-6; '}; paramChanges={ 'IHCpreSynapseParams.tauCa=86e-6; ',... 'DRNLParams.rateToAttenuationFactorProb = 0;'}; %% delare 'showMap' options to control graphical output % see UTIL_showMAP for more options showMapOptions.printModelParameters=1; % prints all parameters showMapOptions.showModelOutput=0; % plot of all stages showMapOptions.printFiringRates=1; % prints stage activity levels showMapOptions.showEfferent=0; % tracks of AR and MOC showMapOptions.surfAN=1; % 2D plot of HSR response if strcmp(signalType, 'file') % needed for labeling plot showMapOptions.fileName=fileName; else showMapOptions.fileName=[]; end %% Generate stimuli switch signalType case 'tones' % Create pure tone stimulus dt=1/sampleRate; % seconds time=dt: dt: duration; inputSignal=sum(sin(2*pi*toneFrequency'*time), 1); amp=10^(leveldBSPL/20)*28e-6; % converts to Pascals (peak) inputSignal=amp*inputSignal; % apply ramps % catch rampTime error if rampDuration>0.5*duration, rampDuration=duration/2; end rampTime=dt:dt:rampDuration; ramp=[0.5*(1+cos(2*pi*rampTime/(2*rampDuration)+pi)) ... ones(1,length(time)-length(rampTime))]; inputSignal=inputSignal.*ramp; ramp=fliplr(ramp); inputSignal=inputSignal.*ramp; % add silence intialSilence= zeros(1,round(beginSilence/dt)); finalSilence= zeros(1,round(endSilence/dt)); inputSignal= [intialSilence inputSignal finalSilence]; case 'file' %% file input simple or mixed [inputSignal sampleRate]=wavread(fileName); dt=1/sampleRate; inputSignal=inputSignal(:,1); targetRMS=20e-6*10^(leveldBSPL/20); rms=(mean(inputSignal.^2))^0.5; amp=targetRMS/rms; inputSignal=inputSignal*amp; intialSilence= zeros(1,round(0.1/dt)); finalSilence= zeros(1,round(0.2/dt)); inputSignal= [intialSilence inputSignal' finalSilence]; end %% run the model tic fprintf('\n') disp(['Signal duration= ' num2str(length(inputSignal)/sampleRate)]) disp([num2str(numChannels) ' channel model: ' AN_spikesOrProbability]) disp('Computing ...') MAP1_14(inputSignal, sampleRate, BFlist, ... MAPparamsName, AN_spikesOrProbability, paramChanges); %% the model run is now complete. Now display the results UTIL_showMAP(showMapOptions) if strcmp(signalType,'tones') disp(['duration=' num2str(duration)]) disp(['level=' num2str(leveldBSPL)]) disp(['toneFrequency=' num2str(toneFrequency)]) global DRNLParams disp(['attenuation factor =' ... num2str(DRNLParams.rateToAttenuationFactor, '%5.3f') ]) disp(['attenuation factor (probability)=' ... num2str(DRNLParams.rateToAttenuationFactorProb, '%5.3f') ]) disp(AN_spikesOrProbability) end disp('paramChanges') for i=1:length(paramChanges) disp(paramChanges{i}) end toc path(restorePath)