diff testPrograms/testACF.m @ 38:c2204b18f4a2 tip

End nov big change
author Ray Meddis <rmeddis@essex.ac.uk>
date Mon, 28 Nov 2011 13:34:28 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/testPrograms/testACF.m	Mon Nov 28 13:34:28 2011 +0000
@@ -0,0 +1,263 @@
+% function [P dt lags SACF]= testACF
+% testACF is a *script* to demonstrate the smoothed ACF of 
+% Balaguer-Ballestera, E. Denham, S.L. and Meddis, R. (2008). 
+%
+% Convert this to a *function* by uncommenting the first line
+%  The function returns the P matrix plotted in Figure 96.
+%  If a function is used, the following outputs are returned:
+%   P:  smoothed SACF (lags x time matrix)
+%   dt: time interval between successive columns of P
+%   lags: lags used in computing P
+%   SACF: unsmoothed SACFs
+%  
+% A range of options are supplied in the early part of the program
+%
+% #1
+% Identify the model parameter file (in 'MAPparamsName') 
+%
+% #2
+% Identify the kind of model required (in 'AN_spikesOrProbability')
+%  'probability' is recommended for ACF work
+%
+% #3
+% Choose between a harmonic complex or file input
+%  by commenting out unwanted code
+%
+% #4
+% Set the signal rms level (in leveldBSPL)
+%
+% #5
+% Identify the model channel BFs in the vector 'BFlist'.
+%
+% #6
+% Last minute changes to the model parameters can be made using
+%  the cell array of strings 'paramChanges'.
+%  This is used here to control the details of the ACF computations
+%  Read the notes in this section for more information
+%
+% displays:
+% Figure 97 shows the AN response to the stimulus. this is a channel x time
+%  display. The z-axis (and colour) is the AN fiber firing rate
+%
+% Figure 96 shows the P-matrix, the smoothed SACF.
+%
+% Figure 89 shows a summary of the evolution of the unsmoothed SACF 
+%  over time. If you wish to take a snapshot of the P-matrix at a
+%  particular time, this figure can help identify when to take it. 
+%  The index on the y-axis, identifies the required row numbers 
+%    of the P or SACF matrix, e.g. P(:,2000)
+%
+%  On request, (filteredSACFParams.plotACFs=1) Figure 89 shows the channel 
+%   by channel ACFs at intervals during the computation as a movie.
+%  The number of ACF displays is controlled by 'plotACFsInterval'
+%   and the movie can be slowed or speeded up using 'plotMoviePauses' 
+%   (see paramChanges section below).
+
+% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
+% This global will find results from MAP1_14
+global savedInputSignal ANprobRateOutput ANoutput dt dtSpikes savedBFlist 
+ % This global,from model parameter file
+global filteredSACFParams                      
+
+dbstop if error
+restorePath=path;
+addpath (['..' filesep 'MAP'],    ['..' filesep 'wavFileStore'], ...
+    ['..' filesep 'utilities'])
+
+% User sets up requirements
+%%  #1 parameter file name
+MAPparamsName='Normal';                 % recommended
+
+
+%% #2 probability (fast) or spikes (slow) representation: select one
+% AN_spikesOrProbability='spikes';
+%   or
+AN_spikesOrProbability='probability';   % recommended
+
+%% #3 A. harmonic sequence or B. speech file input
+% Comment out unwanted code
+% A. harmonic tone (Hz) - useful to demonstrate a broadband sound
+sampleRate= 44100;              % recommended 44100
+signalType= 'tones';
+duration=0.100;                 % seconds
+beginSilence=0.020;
+endSilence=0.020;
+rampDuration=.005;              % raised cosine ramp (seconds)
+
+% toneFrequency is a vector of component frequencies
+F0=120;
+toneFrequency= [3*F0 4*F0 5*F0];
+
+%   or
+% B. file input
+signalType= 'file';
+fileName='Oh No';
+fileName='1z67931a_44kHz';
+
+
+%% #4 rms level
+leveldBSPL= 60;                  % dB SPL (80 for Lieberman)
+
+%% #5 number of channels in the model
+%   21-channel model (log spacing of BFs)
+numChannels=21;
+lowestBF=150; 	highestBF= 6000;
+BFlist=round(logspace(log10(lowestBF), log10(highestBF), numChannels));
+
+%% #6 change model parameters
+% Parameter changes can be used to change one or more model parameters
+%  *after* the MAPparams file has been read (see manual)
+
+% Take control of ACF parameters
+%  The filteredACF parameters are set in the MAPparamsNormal file
+%  However, it is convenient to change them here leving the file intacta
+    minPitch=	80; maxPitch=	500; numPitches=50;  
+    minPitch=	200; maxPitch=	4000; numPitches=40;  
+    maxLag=1/minPitch; minLag=1/maxPitch;
+    lags= linspace(minLag, maxLag, numPitches);
+    
+paramChanges={...
+    'filteredSACFParams.lags=lags;     % autocorrelation lags vector;',...
+    'filteredSACFParams.acfTau=	2;     % (Wiegrebe) time constant ACF;',...
+    'filteredSACFParams.lambda=	0.12;  % slower filter to smooth ACF;',...
+    'filteredSACFParams.plotACFs=1;    % plot ACFs while computing;',...
+    'filteredSACFParams.plotACFsInterval=0.01;',...
+    'filteredSACFParams.plotMoviePauses=.1;  ',...
+    'filteredSACFParams.usePressnitzer=0; % attenuates ACF at  long lags;',...
+    'filteredSACFParams.lagsProcedure=  ''useAllLags'';',...
+    };
+
+% Notes:
+% acfTau:   time constant of unsmoothed ACF
+% lambda:   time constant of smoothed ACFS
+% plotACFs: plot ACFs during computation (0 to switch off, for speed)
+% plotACFsInterval: sampling interval for plots
+% plotMoviePauses:  pause duration between frames to allow viewing
+% usePressnitzer:   gives low weights to long lags
+% lagsProcedure:    used to fiddle with output (ignore)
+
+%% delare 'showMap' options to control graphical output
+% see UTIL_showMAP for more options
+showMapOptions=[];
+% showMapOptions.showModelOutput=0;     % plot of all stages
+showMapOptions.surfAN=1;                % surface plot of HSR response
+showMapOptions.PSTHbinwidth=0.001;      % smoothing for PSTH
+
+if exist('fileName','var')
+    % needed for labeling plot
+    showMapOptions.fileName=fileName;
+end
+
+%% Generate stimuli
+switch signalType
+    case 'tones'
+        % Create tone stimulus
+        dt=1/sampleRate; % seconds
+        time=dt: dt: duration;
+        inputSignal=sum(sin(2*pi*toneFrequency'*time), 1);
+        amp=10^(leveldBSPL/20)*28e-6;   % converts to Pascals (peak)
+        inputSignal=amp*inputSignal;
+        % apply ramps
+        % catch rampTime error
+        if rampDuration>0.5*duration, rampDuration=duration/2; end
+        rampTime=dt:dt:rampDuration;
+        ramp=[0.5*(1+cos(2*pi*rampTime/(2*rampDuration)+pi)) ...
+            ones(1,length(time)-length(rampTime))];
+        inputSignal=inputSignal.*ramp;
+        ramp=fliplr(ramp);
+        inputSignal=inputSignal.*ramp;
+        % add silence
+        intialSilence= zeros(1,round(beginSilence/dt));
+        finalSilence= zeros(1,round(endSilence/dt));
+        inputSignal= [intialSilence inputSignal finalSilence];
+
+    case 'file'
+        %% file input simple or mixed
+        [inputSignal sampleRate]=wavread(fileName);
+        dt=1/sampleRate;
+        inputSignal=inputSignal(:,1);
+        targetRMS=20e-6*10^(leveldBSPL/20);
+        rms=(mean(inputSignal.^2))^0.5;
+        amp=targetRMS/rms;
+        inputSignal=inputSignal*amp;
+end
+
+wavplay(inputSignal, sampleRate)
+
+%% run the model
+
+fprintf('\n')
+disp(['Signal duration= ' num2str(length(inputSignal)/sampleRate)])
+disp([num2str(numChannels) ' channel model: ' AN_spikesOrProbability])
+disp('Computing ...')
+
+MAP1_14(inputSignal, sampleRate, BFlist, ...
+    MAPparamsName, AN_spikesOrProbability, paramChanges);
+
+
+%% The model run is now complete. Now display the results
+% display the AN response
+UTIL_showMAP(showMapOptions)
+
+% compute ACF
+switch AN_spikesOrProbability
+    case 'probability'
+        % use only HSR fibers
+        inputToACF=ANprobRateOutput(end-length(savedBFlist)+1:end,:);
+    otherwise
+        inputToACF=ANoutput;
+        dt=dtSpikes;
+end
+
+disp ('computing ACF...')
+
+% read paramChanges to get new filteredSACFParams
+for i=1:length(paramChanges)
+eval(paramChanges{i});
+end
+
+[P BFlist SACF]= filteredSACF(inputToACF, dt, savedBFlist, filteredSACFParams);
+disp(' ACF done.')
+
+%% plot original waveform on summary/smoothed ACF plot
+figure(96), clf
+subplot(3,1,3)
+t=dt*(1:length(savedInputSignal));
+plot(t,savedInputSignal, 'k')
+xlim([0 t(end)])
+title(['stimulus: ' num2str(leveldBSPL, '%4.0f') ' dB SPL']);
+
+% plot SACF
+figure(96)
+subplot(2,1,1)
+imagesc(P.^2)
+colormap bone
+ylabel('periodicities (Hz)'), xlabel('time (s)')
+title('smoothed SACF. (periodicity x time)')
+% y-axis specifies pitches (1/lags)
+% Force MATLAB to show the lowest pitch
+postedYvalues=[1 get(gca,'ytick')]; set(gca,'ytick',postedYvalues)
+pitches=1./filteredSACFParams.lags;
+set(gca,'ytickLabel', round(pitches(postedYvalues)))
+% x-axis is time at which P is samples
+[nCH nTimes]=size(P);
+t=dt:dt:dt*nTimes;
+tt=get(gca,'xtick');
+set(gca,'xtickLabel', round(100*t(tt))/100)
+
+%% On a new figure show a cascade of SACFs
+figure(89), clf
+% select 100 samples;
+[r c]=size(SACF);
+step=round(c/100);
+idx=step:step:c;
+
+UTIL_cascadePlot(SACF(:,idx)', 1./pitches)
+
+xlabel('lag (s)'), ylabel('time pointer -->')
+title(' SACF summary over time')
+yValues=get(gca,'yTick');
+set(gca,'yTickLabel', num2str(yValues'*100))
+
+path(restorePath)
+