rmeddis@38
|
1 % function [P dt lags SACF]= testACF
|
rmeddis@38
|
2 % testACF is a *script* to demonstrate the smoothed ACF of
|
rmeddis@38
|
3 % Balaguer-Ballestera, E. Denham, S.L. and Meddis, R. (2008).
|
rmeddis@38
|
4 %
|
rmeddis@38
|
5 % Convert this to a *function* by uncommenting the first line
|
rmeddis@38
|
6 % The function returns the P matrix plotted in Figure 96.
|
rmeddis@38
|
7 % If a function is used, the following outputs are returned:
|
rmeddis@38
|
8 % P: smoothed SACF (lags x time matrix)
|
rmeddis@38
|
9 % dt: time interval between successive columns of P
|
rmeddis@38
|
10 % lags: lags used in computing P
|
rmeddis@38
|
11 % SACF: unsmoothed SACFs
|
rmeddis@38
|
12 %
|
rmeddis@38
|
13 % A range of options are supplied in the early part of the program
|
rmeddis@38
|
14 %
|
rmeddis@38
|
15 % #1
|
rmeddis@38
|
16 % Identify the model parameter file (in 'MAPparamsName')
|
rmeddis@38
|
17 %
|
rmeddis@38
|
18 % #2
|
rmeddis@38
|
19 % Identify the kind of model required (in 'AN_spikesOrProbability')
|
rmeddis@38
|
20 % 'probability' is recommended for ACF work
|
rmeddis@38
|
21 %
|
rmeddis@38
|
22 % #3
|
rmeddis@38
|
23 % Choose between a harmonic complex or file input
|
rmeddis@38
|
24 % by commenting out unwanted code
|
rmeddis@38
|
25 %
|
rmeddis@38
|
26 % #4
|
rmeddis@38
|
27 % Set the signal rms level (in leveldBSPL)
|
rmeddis@38
|
28 %
|
rmeddis@38
|
29 % #5
|
rmeddis@38
|
30 % Identify the model channel BFs in the vector 'BFlist'.
|
rmeddis@38
|
31 %
|
rmeddis@38
|
32 % #6
|
rmeddis@38
|
33 % Last minute changes to the model parameters can be made using
|
rmeddis@38
|
34 % the cell array of strings 'paramChanges'.
|
rmeddis@38
|
35 % This is used here to control the details of the ACF computations
|
rmeddis@38
|
36 % Read the notes in this section for more information
|
rmeddis@38
|
37 %
|
rmeddis@38
|
38 % displays:
|
rmeddis@38
|
39 % Figure 97 shows the AN response to the stimulus. this is a channel x time
|
rmeddis@38
|
40 % display. The z-axis (and colour) is the AN fiber firing rate
|
rmeddis@38
|
41 %
|
rmeddis@38
|
42 % Figure 96 shows the P-matrix, the smoothed SACF.
|
rmeddis@38
|
43 %
|
rmeddis@38
|
44 % Figure 89 shows a summary of the evolution of the unsmoothed SACF
|
rmeddis@38
|
45 % over time. If you wish to take a snapshot of the P-matrix at a
|
rmeddis@38
|
46 % particular time, this figure can help identify when to take it.
|
rmeddis@38
|
47 % The index on the y-axis, identifies the required row numbers
|
rmeddis@38
|
48 % of the P or SACF matrix, e.g. P(:,2000)
|
rmeddis@38
|
49 %
|
rmeddis@38
|
50 % On request, (filteredSACFParams.plotACFs=1) Figure 89 shows the channel
|
rmeddis@38
|
51 % by channel ACFs at intervals during the computation as a movie.
|
rmeddis@38
|
52 % The number of ACF displays is controlled by 'plotACFsInterval'
|
rmeddis@38
|
53 % and the movie can be slowed or speeded up using 'plotMoviePauses'
|
rmeddis@38
|
54 % (see paramChanges section below).
|
rmeddis@38
|
55
|
rmeddis@38
|
56 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
rmeddis@38
|
57 % This global will find results from MAP1_14
|
rmeddis@38
|
58 global savedInputSignal ANprobRateOutput ANoutput dt dtSpikes savedBFlist
|
rmeddis@38
|
59 % This global,from model parameter file
|
rmeddis@38
|
60 global filteredSACFParams
|
rmeddis@38
|
61
|
rmeddis@38
|
62 dbstop if error
|
rmeddis@38
|
63 restorePath=path;
|
rmeddis@38
|
64 addpath (['..' filesep 'MAP'], ['..' filesep 'wavFileStore'], ...
|
rmeddis@38
|
65 ['..' filesep 'utilities'])
|
rmeddis@38
|
66
|
rmeddis@38
|
67 % User sets up requirements
|
rmeddis@38
|
68 %% #1 parameter file name
|
rmeddis@38
|
69 MAPparamsName='Normal'; % recommended
|
rmeddis@38
|
70
|
rmeddis@38
|
71
|
rmeddis@38
|
72 %% #2 probability (fast) or spikes (slow) representation: select one
|
rmeddis@38
|
73 % AN_spikesOrProbability='spikes';
|
rmeddis@38
|
74 % or
|
rmeddis@38
|
75 AN_spikesOrProbability='probability'; % recommended
|
rmeddis@38
|
76
|
rmeddis@38
|
77 %% #3 A. harmonic sequence or B. speech file input
|
rmeddis@38
|
78 % Comment out unwanted code
|
rmeddis@38
|
79 % A. harmonic tone (Hz) - useful to demonstrate a broadband sound
|
rmeddis@38
|
80 sampleRate= 44100; % recommended 44100
|
rmeddis@38
|
81 signalType= 'tones';
|
rmeddis@38
|
82 duration=0.100; % seconds
|
rmeddis@38
|
83 beginSilence=0.020;
|
rmeddis@38
|
84 endSilence=0.020;
|
rmeddis@38
|
85 rampDuration=.005; % raised cosine ramp (seconds)
|
rmeddis@38
|
86
|
rmeddis@38
|
87 % toneFrequency is a vector of component frequencies
|
rmeddis@38
|
88 F0=120;
|
rmeddis@38
|
89 toneFrequency= [3*F0 4*F0 5*F0];
|
rmeddis@38
|
90
|
rmeddis@38
|
91 % or
|
rmeddis@38
|
92 % B. file input
|
rmeddis@38
|
93 signalType= 'file';
|
rmeddis@38
|
94 fileName='Oh No';
|
rmeddis@38
|
95 fileName='1z67931a_44kHz';
|
rmeddis@38
|
96
|
rmeddis@38
|
97
|
rmeddis@38
|
98 %% #4 rms level
|
rmeddis@38
|
99 leveldBSPL= 60; % dB SPL (80 for Lieberman)
|
rmeddis@38
|
100
|
rmeddis@38
|
101 %% #5 number of channels in the model
|
rmeddis@38
|
102 % 21-channel model (log spacing of BFs)
|
rmeddis@38
|
103 numChannels=21;
|
rmeddis@38
|
104 lowestBF=150; highestBF= 6000;
|
rmeddis@38
|
105 BFlist=round(logspace(log10(lowestBF), log10(highestBF), numChannels));
|
rmeddis@38
|
106
|
rmeddis@38
|
107 %% #6 change model parameters
|
rmeddis@38
|
108 % Parameter changes can be used to change one or more model parameters
|
rmeddis@38
|
109 % *after* the MAPparams file has been read (see manual)
|
rmeddis@38
|
110
|
rmeddis@38
|
111 % Take control of ACF parameters
|
rmeddis@38
|
112 % The filteredACF parameters are set in the MAPparamsNormal file
|
rmeddis@38
|
113 % However, it is convenient to change them here leving the file intacta
|
rmeddis@38
|
114 minPitch= 80; maxPitch= 500; numPitches=50;
|
rmeddis@38
|
115 minPitch= 200; maxPitch= 4000; numPitches=40;
|
rmeddis@38
|
116 maxLag=1/minPitch; minLag=1/maxPitch;
|
rmeddis@38
|
117 lags= linspace(minLag, maxLag, numPitches);
|
rmeddis@38
|
118
|
rmeddis@38
|
119 paramChanges={...
|
rmeddis@38
|
120 'filteredSACFParams.lags=lags; % autocorrelation lags vector;',...
|
rmeddis@38
|
121 'filteredSACFParams.acfTau= 2; % (Wiegrebe) time constant ACF;',...
|
rmeddis@38
|
122 'filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF;',...
|
rmeddis@38
|
123 'filteredSACFParams.plotACFs=1; % plot ACFs while computing;',...
|
rmeddis@38
|
124 'filteredSACFParams.plotACFsInterval=0.01;',...
|
rmeddis@38
|
125 'filteredSACFParams.plotMoviePauses=.1; ',...
|
rmeddis@38
|
126 'filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags;',...
|
rmeddis@38
|
127 'filteredSACFParams.lagsProcedure= ''useAllLags'';',...
|
rmeddis@38
|
128 };
|
rmeddis@38
|
129
|
rmeddis@38
|
130 % Notes:
|
rmeddis@38
|
131 % acfTau: time constant of unsmoothed ACF
|
rmeddis@38
|
132 % lambda: time constant of smoothed ACFS
|
rmeddis@38
|
133 % plotACFs: plot ACFs during computation (0 to switch off, for speed)
|
rmeddis@38
|
134 % plotACFsInterval: sampling interval for plots
|
rmeddis@38
|
135 % plotMoviePauses: pause duration between frames to allow viewing
|
rmeddis@38
|
136 % usePressnitzer: gives low weights to long lags
|
rmeddis@38
|
137 % lagsProcedure: used to fiddle with output (ignore)
|
rmeddis@38
|
138
|
rmeddis@38
|
139 %% delare 'showMap' options to control graphical output
|
rmeddis@38
|
140 % see UTIL_showMAP for more options
|
rmeddis@38
|
141 showMapOptions=[];
|
rmeddis@38
|
142 % showMapOptions.showModelOutput=0; % plot of all stages
|
rmeddis@38
|
143 showMapOptions.surfAN=1; % surface plot of HSR response
|
rmeddis@38
|
144 showMapOptions.PSTHbinwidth=0.001; % smoothing for PSTH
|
rmeddis@38
|
145
|
rmeddis@38
|
146 if exist('fileName','var')
|
rmeddis@38
|
147 % needed for labeling plot
|
rmeddis@38
|
148 showMapOptions.fileName=fileName;
|
rmeddis@38
|
149 end
|
rmeddis@38
|
150
|
rmeddis@38
|
151 %% Generate stimuli
|
rmeddis@38
|
152 switch signalType
|
rmeddis@38
|
153 case 'tones'
|
rmeddis@38
|
154 % Create tone stimulus
|
rmeddis@38
|
155 dt=1/sampleRate; % seconds
|
rmeddis@38
|
156 time=dt: dt: duration;
|
rmeddis@38
|
157 inputSignal=sum(sin(2*pi*toneFrequency'*time), 1);
|
rmeddis@38
|
158 amp=10^(leveldBSPL/20)*28e-6; % converts to Pascals (peak)
|
rmeddis@38
|
159 inputSignal=amp*inputSignal;
|
rmeddis@38
|
160 % apply ramps
|
rmeddis@38
|
161 % catch rampTime error
|
rmeddis@38
|
162 if rampDuration>0.5*duration, rampDuration=duration/2; end
|
rmeddis@38
|
163 rampTime=dt:dt:rampDuration;
|
rmeddis@38
|
164 ramp=[0.5*(1+cos(2*pi*rampTime/(2*rampDuration)+pi)) ...
|
rmeddis@38
|
165 ones(1,length(time)-length(rampTime))];
|
rmeddis@38
|
166 inputSignal=inputSignal.*ramp;
|
rmeddis@38
|
167 ramp=fliplr(ramp);
|
rmeddis@38
|
168 inputSignal=inputSignal.*ramp;
|
rmeddis@38
|
169 % add silence
|
rmeddis@38
|
170 intialSilence= zeros(1,round(beginSilence/dt));
|
rmeddis@38
|
171 finalSilence= zeros(1,round(endSilence/dt));
|
rmeddis@38
|
172 inputSignal= [intialSilence inputSignal finalSilence];
|
rmeddis@38
|
173
|
rmeddis@38
|
174 case 'file'
|
rmeddis@38
|
175 %% file input simple or mixed
|
rmeddis@38
|
176 [inputSignal sampleRate]=wavread(fileName);
|
rmeddis@38
|
177 dt=1/sampleRate;
|
rmeddis@38
|
178 inputSignal=inputSignal(:,1);
|
rmeddis@38
|
179 targetRMS=20e-6*10^(leveldBSPL/20);
|
rmeddis@38
|
180 rms=(mean(inputSignal.^2))^0.5;
|
rmeddis@38
|
181 amp=targetRMS/rms;
|
rmeddis@38
|
182 inputSignal=inputSignal*amp;
|
rmeddis@38
|
183 end
|
rmeddis@38
|
184
|
rmeddis@38
|
185 wavplay(inputSignal, sampleRate)
|
rmeddis@38
|
186
|
rmeddis@38
|
187 %% run the model
|
rmeddis@38
|
188
|
rmeddis@38
|
189 fprintf('\n')
|
rmeddis@38
|
190 disp(['Signal duration= ' num2str(length(inputSignal)/sampleRate)])
|
rmeddis@38
|
191 disp([num2str(numChannels) ' channel model: ' AN_spikesOrProbability])
|
rmeddis@38
|
192 disp('Computing ...')
|
rmeddis@38
|
193
|
rmeddis@38
|
194 MAP1_14(inputSignal, sampleRate, BFlist, ...
|
rmeddis@38
|
195 MAPparamsName, AN_spikesOrProbability, paramChanges);
|
rmeddis@38
|
196
|
rmeddis@38
|
197
|
rmeddis@38
|
198 %% The model run is now complete. Now display the results
|
rmeddis@38
|
199 % display the AN response
|
rmeddis@38
|
200 UTIL_showMAP(showMapOptions)
|
rmeddis@38
|
201
|
rmeddis@38
|
202 % compute ACF
|
rmeddis@38
|
203 switch AN_spikesOrProbability
|
rmeddis@38
|
204 case 'probability'
|
rmeddis@38
|
205 % use only HSR fibers
|
rmeddis@38
|
206 inputToACF=ANprobRateOutput(end-length(savedBFlist)+1:end,:);
|
rmeddis@38
|
207 otherwise
|
rmeddis@38
|
208 inputToACF=ANoutput;
|
rmeddis@38
|
209 dt=dtSpikes;
|
rmeddis@38
|
210 end
|
rmeddis@38
|
211
|
rmeddis@38
|
212 disp ('computing ACF...')
|
rmeddis@38
|
213
|
rmeddis@38
|
214 % read paramChanges to get new filteredSACFParams
|
rmeddis@38
|
215 for i=1:length(paramChanges)
|
rmeddis@38
|
216 eval(paramChanges{i});
|
rmeddis@38
|
217 end
|
rmeddis@38
|
218
|
rmeddis@38
|
219 [P BFlist SACF]= filteredSACF(inputToACF, dt, savedBFlist, filteredSACFParams);
|
rmeddis@38
|
220 disp(' ACF done.')
|
rmeddis@38
|
221
|
rmeddis@38
|
222 %% plot original waveform on summary/smoothed ACF plot
|
rmeddis@38
|
223 figure(96), clf
|
rmeddis@38
|
224 subplot(3,1,3)
|
rmeddis@38
|
225 t=dt*(1:length(savedInputSignal));
|
rmeddis@38
|
226 plot(t,savedInputSignal, 'k')
|
rmeddis@38
|
227 xlim([0 t(end)])
|
rmeddis@38
|
228 title(['stimulus: ' num2str(leveldBSPL, '%4.0f') ' dB SPL']);
|
rmeddis@38
|
229
|
rmeddis@38
|
230 % plot SACF
|
rmeddis@38
|
231 figure(96)
|
rmeddis@38
|
232 subplot(2,1,1)
|
rmeddis@38
|
233 imagesc(P.^2)
|
rmeddis@38
|
234 colormap bone
|
rmeddis@38
|
235 ylabel('periodicities (Hz)'), xlabel('time (s)')
|
rmeddis@38
|
236 title('smoothed SACF. (periodicity x time)')
|
rmeddis@38
|
237 % y-axis specifies pitches (1/lags)
|
rmeddis@38
|
238 % Force MATLAB to show the lowest pitch
|
rmeddis@38
|
239 postedYvalues=[1 get(gca,'ytick')]; set(gca,'ytick',postedYvalues)
|
rmeddis@38
|
240 pitches=1./filteredSACFParams.lags;
|
rmeddis@38
|
241 set(gca,'ytickLabel', round(pitches(postedYvalues)))
|
rmeddis@38
|
242 % x-axis is time at which P is samples
|
rmeddis@38
|
243 [nCH nTimes]=size(P);
|
rmeddis@38
|
244 t=dt:dt:dt*nTimes;
|
rmeddis@38
|
245 tt=get(gca,'xtick');
|
rmeddis@38
|
246 set(gca,'xtickLabel', round(100*t(tt))/100)
|
rmeddis@38
|
247
|
rmeddis@38
|
248 %% On a new figure show a cascade of SACFs
|
rmeddis@38
|
249 figure(89), clf
|
rmeddis@38
|
250 % select 100 samples;
|
rmeddis@38
|
251 [r c]=size(SACF);
|
rmeddis@38
|
252 step=round(c/100);
|
rmeddis@38
|
253 idx=step:step:c;
|
rmeddis@38
|
254
|
rmeddis@38
|
255 UTIL_cascadePlot(SACF(:,idx)', 1./pitches)
|
rmeddis@38
|
256
|
rmeddis@38
|
257 xlabel('lag (s)'), ylabel('time pointer -->')
|
rmeddis@38
|
258 title(' SACF summary over time')
|
rmeddis@38
|
259 yValues=get(gca,'yTick');
|
rmeddis@38
|
260 set(gca,'yTickLabel', num2str(yValues'*100))
|
rmeddis@38
|
261
|
rmeddis@38
|
262 path(restorePath)
|
rmeddis@38
|
263
|