annotate testPrograms/testACF.m @ 38:c2204b18f4a2 tip

End nov big change
author Ray Meddis <rmeddis@essex.ac.uk>
date Mon, 28 Nov 2011 13:34:28 +0000
parents
children
rev   line source
rmeddis@38 1 % function [P dt lags SACF]= testACF
rmeddis@38 2 % testACF is a *script* to demonstrate the smoothed ACF of
rmeddis@38 3 % Balaguer-Ballestera, E. Denham, S.L. and Meddis, R. (2008).
rmeddis@38 4 %
rmeddis@38 5 % Convert this to a *function* by uncommenting the first line
rmeddis@38 6 % The function returns the P matrix plotted in Figure 96.
rmeddis@38 7 % If a function is used, the following outputs are returned:
rmeddis@38 8 % P: smoothed SACF (lags x time matrix)
rmeddis@38 9 % dt: time interval between successive columns of P
rmeddis@38 10 % lags: lags used in computing P
rmeddis@38 11 % SACF: unsmoothed SACFs
rmeddis@38 12 %
rmeddis@38 13 % A range of options are supplied in the early part of the program
rmeddis@38 14 %
rmeddis@38 15 % #1
rmeddis@38 16 % Identify the model parameter file (in 'MAPparamsName')
rmeddis@38 17 %
rmeddis@38 18 % #2
rmeddis@38 19 % Identify the kind of model required (in 'AN_spikesOrProbability')
rmeddis@38 20 % 'probability' is recommended for ACF work
rmeddis@38 21 %
rmeddis@38 22 % #3
rmeddis@38 23 % Choose between a harmonic complex or file input
rmeddis@38 24 % by commenting out unwanted code
rmeddis@38 25 %
rmeddis@38 26 % #4
rmeddis@38 27 % Set the signal rms level (in leveldBSPL)
rmeddis@38 28 %
rmeddis@38 29 % #5
rmeddis@38 30 % Identify the model channel BFs in the vector 'BFlist'.
rmeddis@38 31 %
rmeddis@38 32 % #6
rmeddis@38 33 % Last minute changes to the model parameters can be made using
rmeddis@38 34 % the cell array of strings 'paramChanges'.
rmeddis@38 35 % This is used here to control the details of the ACF computations
rmeddis@38 36 % Read the notes in this section for more information
rmeddis@38 37 %
rmeddis@38 38 % displays:
rmeddis@38 39 % Figure 97 shows the AN response to the stimulus. this is a channel x time
rmeddis@38 40 % display. The z-axis (and colour) is the AN fiber firing rate
rmeddis@38 41 %
rmeddis@38 42 % Figure 96 shows the P-matrix, the smoothed SACF.
rmeddis@38 43 %
rmeddis@38 44 % Figure 89 shows a summary of the evolution of the unsmoothed SACF
rmeddis@38 45 % over time. If you wish to take a snapshot of the P-matrix at a
rmeddis@38 46 % particular time, this figure can help identify when to take it.
rmeddis@38 47 % The index on the y-axis, identifies the required row numbers
rmeddis@38 48 % of the P or SACF matrix, e.g. P(:,2000)
rmeddis@38 49 %
rmeddis@38 50 % On request, (filteredSACFParams.plotACFs=1) Figure 89 shows the channel
rmeddis@38 51 % by channel ACFs at intervals during the computation as a movie.
rmeddis@38 52 % The number of ACF displays is controlled by 'plotACFsInterval'
rmeddis@38 53 % and the movie can be slowed or speeded up using 'plotMoviePauses'
rmeddis@38 54 % (see paramChanges section below).
rmeddis@38 55
rmeddis@38 56 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
rmeddis@38 57 % This global will find results from MAP1_14
rmeddis@38 58 global savedInputSignal ANprobRateOutput ANoutput dt dtSpikes savedBFlist
rmeddis@38 59 % This global,from model parameter file
rmeddis@38 60 global filteredSACFParams
rmeddis@38 61
rmeddis@38 62 dbstop if error
rmeddis@38 63 restorePath=path;
rmeddis@38 64 addpath (['..' filesep 'MAP'], ['..' filesep 'wavFileStore'], ...
rmeddis@38 65 ['..' filesep 'utilities'])
rmeddis@38 66
rmeddis@38 67 % User sets up requirements
rmeddis@38 68 %% #1 parameter file name
rmeddis@38 69 MAPparamsName='Normal'; % recommended
rmeddis@38 70
rmeddis@38 71
rmeddis@38 72 %% #2 probability (fast) or spikes (slow) representation: select one
rmeddis@38 73 % AN_spikesOrProbability='spikes';
rmeddis@38 74 % or
rmeddis@38 75 AN_spikesOrProbability='probability'; % recommended
rmeddis@38 76
rmeddis@38 77 %% #3 A. harmonic sequence or B. speech file input
rmeddis@38 78 % Comment out unwanted code
rmeddis@38 79 % A. harmonic tone (Hz) - useful to demonstrate a broadband sound
rmeddis@38 80 sampleRate= 44100; % recommended 44100
rmeddis@38 81 signalType= 'tones';
rmeddis@38 82 duration=0.100; % seconds
rmeddis@38 83 beginSilence=0.020;
rmeddis@38 84 endSilence=0.020;
rmeddis@38 85 rampDuration=.005; % raised cosine ramp (seconds)
rmeddis@38 86
rmeddis@38 87 % toneFrequency is a vector of component frequencies
rmeddis@38 88 F0=120;
rmeddis@38 89 toneFrequency= [3*F0 4*F0 5*F0];
rmeddis@38 90
rmeddis@38 91 % or
rmeddis@38 92 % B. file input
rmeddis@38 93 signalType= 'file';
rmeddis@38 94 fileName='Oh No';
rmeddis@38 95 fileName='1z67931a_44kHz';
rmeddis@38 96
rmeddis@38 97
rmeddis@38 98 %% #4 rms level
rmeddis@38 99 leveldBSPL= 60; % dB SPL (80 for Lieberman)
rmeddis@38 100
rmeddis@38 101 %% #5 number of channels in the model
rmeddis@38 102 % 21-channel model (log spacing of BFs)
rmeddis@38 103 numChannels=21;
rmeddis@38 104 lowestBF=150; highestBF= 6000;
rmeddis@38 105 BFlist=round(logspace(log10(lowestBF), log10(highestBF), numChannels));
rmeddis@38 106
rmeddis@38 107 %% #6 change model parameters
rmeddis@38 108 % Parameter changes can be used to change one or more model parameters
rmeddis@38 109 % *after* the MAPparams file has been read (see manual)
rmeddis@38 110
rmeddis@38 111 % Take control of ACF parameters
rmeddis@38 112 % The filteredACF parameters are set in the MAPparamsNormal file
rmeddis@38 113 % However, it is convenient to change them here leving the file intacta
rmeddis@38 114 minPitch= 80; maxPitch= 500; numPitches=50;
rmeddis@38 115 minPitch= 200; maxPitch= 4000; numPitches=40;
rmeddis@38 116 maxLag=1/minPitch; minLag=1/maxPitch;
rmeddis@38 117 lags= linspace(minLag, maxLag, numPitches);
rmeddis@38 118
rmeddis@38 119 paramChanges={...
rmeddis@38 120 'filteredSACFParams.lags=lags; % autocorrelation lags vector;',...
rmeddis@38 121 'filteredSACFParams.acfTau= 2; % (Wiegrebe) time constant ACF;',...
rmeddis@38 122 'filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF;',...
rmeddis@38 123 'filteredSACFParams.plotACFs=1; % plot ACFs while computing;',...
rmeddis@38 124 'filteredSACFParams.plotACFsInterval=0.01;',...
rmeddis@38 125 'filteredSACFParams.plotMoviePauses=.1; ',...
rmeddis@38 126 'filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags;',...
rmeddis@38 127 'filteredSACFParams.lagsProcedure= ''useAllLags'';',...
rmeddis@38 128 };
rmeddis@38 129
rmeddis@38 130 % Notes:
rmeddis@38 131 % acfTau: time constant of unsmoothed ACF
rmeddis@38 132 % lambda: time constant of smoothed ACFS
rmeddis@38 133 % plotACFs: plot ACFs during computation (0 to switch off, for speed)
rmeddis@38 134 % plotACFsInterval: sampling interval for plots
rmeddis@38 135 % plotMoviePauses: pause duration between frames to allow viewing
rmeddis@38 136 % usePressnitzer: gives low weights to long lags
rmeddis@38 137 % lagsProcedure: used to fiddle with output (ignore)
rmeddis@38 138
rmeddis@38 139 %% delare 'showMap' options to control graphical output
rmeddis@38 140 % see UTIL_showMAP for more options
rmeddis@38 141 showMapOptions=[];
rmeddis@38 142 % showMapOptions.showModelOutput=0; % plot of all stages
rmeddis@38 143 showMapOptions.surfAN=1; % surface plot of HSR response
rmeddis@38 144 showMapOptions.PSTHbinwidth=0.001; % smoothing for PSTH
rmeddis@38 145
rmeddis@38 146 if exist('fileName','var')
rmeddis@38 147 % needed for labeling plot
rmeddis@38 148 showMapOptions.fileName=fileName;
rmeddis@38 149 end
rmeddis@38 150
rmeddis@38 151 %% Generate stimuli
rmeddis@38 152 switch signalType
rmeddis@38 153 case 'tones'
rmeddis@38 154 % Create tone stimulus
rmeddis@38 155 dt=1/sampleRate; % seconds
rmeddis@38 156 time=dt: dt: duration;
rmeddis@38 157 inputSignal=sum(sin(2*pi*toneFrequency'*time), 1);
rmeddis@38 158 amp=10^(leveldBSPL/20)*28e-6; % converts to Pascals (peak)
rmeddis@38 159 inputSignal=amp*inputSignal;
rmeddis@38 160 % apply ramps
rmeddis@38 161 % catch rampTime error
rmeddis@38 162 if rampDuration>0.5*duration, rampDuration=duration/2; end
rmeddis@38 163 rampTime=dt:dt:rampDuration;
rmeddis@38 164 ramp=[0.5*(1+cos(2*pi*rampTime/(2*rampDuration)+pi)) ...
rmeddis@38 165 ones(1,length(time)-length(rampTime))];
rmeddis@38 166 inputSignal=inputSignal.*ramp;
rmeddis@38 167 ramp=fliplr(ramp);
rmeddis@38 168 inputSignal=inputSignal.*ramp;
rmeddis@38 169 % add silence
rmeddis@38 170 intialSilence= zeros(1,round(beginSilence/dt));
rmeddis@38 171 finalSilence= zeros(1,round(endSilence/dt));
rmeddis@38 172 inputSignal= [intialSilence inputSignal finalSilence];
rmeddis@38 173
rmeddis@38 174 case 'file'
rmeddis@38 175 %% file input simple or mixed
rmeddis@38 176 [inputSignal sampleRate]=wavread(fileName);
rmeddis@38 177 dt=1/sampleRate;
rmeddis@38 178 inputSignal=inputSignal(:,1);
rmeddis@38 179 targetRMS=20e-6*10^(leveldBSPL/20);
rmeddis@38 180 rms=(mean(inputSignal.^2))^0.5;
rmeddis@38 181 amp=targetRMS/rms;
rmeddis@38 182 inputSignal=inputSignal*amp;
rmeddis@38 183 end
rmeddis@38 184
rmeddis@38 185 wavplay(inputSignal, sampleRate)
rmeddis@38 186
rmeddis@38 187 %% run the model
rmeddis@38 188
rmeddis@38 189 fprintf('\n')
rmeddis@38 190 disp(['Signal duration= ' num2str(length(inputSignal)/sampleRate)])
rmeddis@38 191 disp([num2str(numChannels) ' channel model: ' AN_spikesOrProbability])
rmeddis@38 192 disp('Computing ...')
rmeddis@38 193
rmeddis@38 194 MAP1_14(inputSignal, sampleRate, BFlist, ...
rmeddis@38 195 MAPparamsName, AN_spikesOrProbability, paramChanges);
rmeddis@38 196
rmeddis@38 197
rmeddis@38 198 %% The model run is now complete. Now display the results
rmeddis@38 199 % display the AN response
rmeddis@38 200 UTIL_showMAP(showMapOptions)
rmeddis@38 201
rmeddis@38 202 % compute ACF
rmeddis@38 203 switch AN_spikesOrProbability
rmeddis@38 204 case 'probability'
rmeddis@38 205 % use only HSR fibers
rmeddis@38 206 inputToACF=ANprobRateOutput(end-length(savedBFlist)+1:end,:);
rmeddis@38 207 otherwise
rmeddis@38 208 inputToACF=ANoutput;
rmeddis@38 209 dt=dtSpikes;
rmeddis@38 210 end
rmeddis@38 211
rmeddis@38 212 disp ('computing ACF...')
rmeddis@38 213
rmeddis@38 214 % read paramChanges to get new filteredSACFParams
rmeddis@38 215 for i=1:length(paramChanges)
rmeddis@38 216 eval(paramChanges{i});
rmeddis@38 217 end
rmeddis@38 218
rmeddis@38 219 [P BFlist SACF]= filteredSACF(inputToACF, dt, savedBFlist, filteredSACFParams);
rmeddis@38 220 disp(' ACF done.')
rmeddis@38 221
rmeddis@38 222 %% plot original waveform on summary/smoothed ACF plot
rmeddis@38 223 figure(96), clf
rmeddis@38 224 subplot(3,1,3)
rmeddis@38 225 t=dt*(1:length(savedInputSignal));
rmeddis@38 226 plot(t,savedInputSignal, 'k')
rmeddis@38 227 xlim([0 t(end)])
rmeddis@38 228 title(['stimulus: ' num2str(leveldBSPL, '%4.0f') ' dB SPL']);
rmeddis@38 229
rmeddis@38 230 % plot SACF
rmeddis@38 231 figure(96)
rmeddis@38 232 subplot(2,1,1)
rmeddis@38 233 imagesc(P.^2)
rmeddis@38 234 colormap bone
rmeddis@38 235 ylabel('periodicities (Hz)'), xlabel('time (s)')
rmeddis@38 236 title('smoothed SACF. (periodicity x time)')
rmeddis@38 237 % y-axis specifies pitches (1/lags)
rmeddis@38 238 % Force MATLAB to show the lowest pitch
rmeddis@38 239 postedYvalues=[1 get(gca,'ytick')]; set(gca,'ytick',postedYvalues)
rmeddis@38 240 pitches=1./filteredSACFParams.lags;
rmeddis@38 241 set(gca,'ytickLabel', round(pitches(postedYvalues)))
rmeddis@38 242 % x-axis is time at which P is samples
rmeddis@38 243 [nCH nTimes]=size(P);
rmeddis@38 244 t=dt:dt:dt*nTimes;
rmeddis@38 245 tt=get(gca,'xtick');
rmeddis@38 246 set(gca,'xtickLabel', round(100*t(tt))/100)
rmeddis@38 247
rmeddis@38 248 %% On a new figure show a cascade of SACFs
rmeddis@38 249 figure(89), clf
rmeddis@38 250 % select 100 samples;
rmeddis@38 251 [r c]=size(SACF);
rmeddis@38 252 step=round(c/100);
rmeddis@38 253 idx=step:step:c;
rmeddis@38 254
rmeddis@38 255 UTIL_cascadePlot(SACF(:,idx)', 1./pitches)
rmeddis@38 256
rmeddis@38 257 xlabel('lag (s)'), ylabel('time pointer -->')
rmeddis@38 258 title(' SACF summary over time')
rmeddis@38 259 yValues=get(gca,'yTick');
rmeddis@38 260 set(gca,'yTickLabel', num2str(yValues'*100))
rmeddis@38 261
rmeddis@38 262 path(restorePath)
rmeddis@38 263