annotate parameterStore/MAPparamsPL.m @ 38:c2204b18f4a2 tip

End nov big change
author Ray Meddis <rmeddis@essex.ac.uk>
date Mon, 28 Nov 2011 13:34:28 +0000
parents
children
rev   line source
rmeddis@38 1 function method=MAPparamsPL ...
rmeddis@38 2 (BFlist, sampleRate, showParams, paramChanges)
rmeddis@38 3 % MAPparamsPL.m is a parameter file, similar in all respects to
rmeddis@38 4 % MAPparamsNormal except that a primary-like' neuron is used at the
rmeddis@38 5 % level of the cochlear nuclues (rather than a chopper cell).
rmeddis@38 6 %
rmeddis@38 7 % MAPparams<> establishes a complete set of MAP parameters
rmeddis@38 8 % Parameter file names must be of the form <MAPparams><name>
rmeddis@38 9 %
rmeddis@38 10 % Input arguments
rmeddis@38 11 % BFlist (optional) specifies the desired list of channel BFs
rmeddis@38 12 % otherwise defaults set below
rmeddis@38 13 % sampleRate (optional), default is 50000.
rmeddis@38 14 % showParams (optional) =1 prints out the complete set of parameters
rmeddis@38 15 % Output argument
rmeddis@38 16 % method passes a miscelleny of values
rmeddis@38 17 % the use of 'method' is being phased out. use globals
rmeddis@38 18
rmeddis@38 19 global inputStimulusParams OMEParams DRNLParams IHC_cilia_RPParams
rmeddis@38 20 global IHCpreSynapseParams AN_IHCsynapseParams
rmeddis@38 21 global MacGregorParams MacGregorMultiParams filteredSACFParams
rmeddis@38 22 global experiment % used only by calls from multiThreshold
rmeddis@38 23 % global IHC_VResp_VivoParams
rmeddis@38 24
rmeddis@38 25 currentFile=mfilename; % i.e. the name of this mfile
rmeddis@38 26 method.parameterSource=currentFile(10:end); % for the record
rmeddis@38 27
rmeddis@38 28 efferentDelay=0.010;
rmeddis@38 29 method.segmentDuration=efferentDelay;
rmeddis@38 30
rmeddis@38 31 if nargin<3, showParams=0; end
rmeddis@38 32 if nargin<2, sampleRate=50000; end
rmeddis@38 33 if nargin<1 || BFlist(1)<0 % if BFlist= -1, set BFlist to default
rmeddis@38 34 lowestBF=250; highestBF= 8000; numChannels=21;
rmeddis@38 35 % 21 chs (250-8k)includes BFs at 250 500 1000 2000 4000 8000
rmeddis@38 36 BFlist=round(logspace(log10(lowestBF),log10(highestBF),numChannels));
rmeddis@38 37 end
rmeddis@38 38 % BFlist=1000; % single channel option
rmeddis@38 39
rmeddis@38 40 % preserve for backward campatibility
rmeddis@38 41 method.nonlinCF=BFlist;
rmeddis@38 42 method.dt=1/sampleRate;
rmeddis@38 43
rmeddis@38 44 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmeddis@38 45 % set model parameters
rmeddis@38 46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmeddis@38 47
rmeddis@38 48 %% #1 inputStimulus
rmeddis@38 49 inputStimulusParams=[];
rmeddis@38 50 inputStimulusParams.sampleRate= sampleRate;
rmeddis@38 51
rmeddis@38 52 %% #2 outerMiddleEar
rmeddis@38 53 OMEParams=[]; % clear the structure first
rmeddis@38 54 % outer ear resonances band pass filter [gain lp order hp]
rmeddis@38 55 OMEParams.externalResonanceFilters= [ 10 1 1000 4000];
rmeddis@38 56
rmeddis@38 57 % highpass stapes filter
rmeddis@38 58 % Huber gives 2e-9 m at 80 dB and 1 kHz (2e-13 at 0 dB SPL)
rmeddis@38 59 OMEParams.OMEstapesHPcutoff= 1000;
rmeddis@38 60 OMEParams.stapesScalar= 45e-9;
rmeddis@38 61
rmeddis@38 62 % Acoustic reflex: maximum attenuation should be around 25 dB (Price, 1966)
rmeddis@38 63 % i.e. a minimum ratio of 0.056.
rmeddis@38 64 % 'spikes' model: AR based on brainstem spiking activity (LSR)
rmeddis@38 65 OMEParams.rateToAttenuationFactor=0.05; % * N(all ICspikes)
rmeddis@38 66 % 'probability model': Ar based on AN firing probabilities (LSR)
rmeddis@38 67 OMEParams.rateToAttenuationFactorProb=0.02; % * N(all ANrates)
rmeddis@38 68
rmeddis@38 69 % asymptote should be around 100-200 ms
rmeddis@38 70 OMEParams.ARtau=.250; % AR smoothing function 250 ms fits Hung and Dallos
rmeddis@38 71 % delay must be longer than the segment length
rmeddis@38 72 OMEParams.ARdelay=efferentDelay; %Moss gives 8.5 ms latency
rmeddis@38 73 OMEParams.ARrateThreshold=40;
rmeddis@38 74
rmeddis@38 75 %% #3 DRNL
rmeddis@38 76 DRNLParams=[]; % clear the structure first
rmeddis@38 77 % DRNLParams.BFlist=BFlist;
rmeddis@38 78
rmeddis@38 79 % *** DRNL nonlinear path
rmeddis@38 80 % broken stick compression
rmeddis@38 81 DRNLParams.a=2e4; % DRNL.a=0 means no OHCs (no nonlinear path)
rmeddis@38 82 DRNLParams.c=.2; % compression exponent
rmeddis@38 83 DRNLParams.ctBMdB = 10; %Compression threshold dB re 10e-9 m displacement
rmeddis@38 84
rmeddis@38 85 % filters
rmeddis@38 86 DRNLParams.nonlinOrder= 3; % order of nonlinear gammatone filters
rmeddis@38 87 DRNLParams.nonlinCFs=BFlist;
rmeddis@38 88 DRNLParams.p=0.2895; DRNLParams.q=250; % save p and q for printing only
rmeddis@38 89 % p=0.2895; q=250; % human (% p=0.14; q=366; % cat)
rmeddis@38 90 DRNLParams.nlBWs= DRNLParams.p * BFlist + DRNLParams.q;
rmeddis@38 91
rmeddis@38 92 % *** DRNL linear path:
rmeddis@38 93 DRNLParams.g=100; % linear path gain factor
rmeddis@38 94 DRNLParams.linOrder=3; % order of linear gammatone filters
rmeddis@38 95 % linCF is not necessarily the same as nonlinCF
rmeddis@38 96 minLinCF=153.13; coeffLinCF=0.7341; % linCF>nonlinBF for BF < 1 kHz
rmeddis@38 97 DRNLParams.linCFs=minLinCF+coeffLinCF*BFlist;
rmeddis@38 98 % bandwidths (linear)
rmeddis@38 99 minLinBW=100; coeffLinBW=0.6531;
rmeddis@38 100 DRNLParams.linBWs=minLinBW + coeffLinBW*BFlist; % bandwidths of linear filters
rmeddis@38 101
rmeddis@38 102 % *** DRNL MOC efferents
rmeddis@38 103 DRNLParams.MOCdelay = efferentDelay; % must be < segment length!
rmeddis@38 104 DRNLParams.minMOCattenuationdB=-35;
rmeddis@38 105
rmeddis@38 106 % 'spikes' model: MOC based on brainstem spiking activity (HSR)
rmeddis@38 107 DRNLParams.MOCtau =.0285; % smoothing for MOC
rmeddis@38 108 DRNLParams.rateToAttenuationFactor = .03; % strength of MOC
rmeddis@38 109 DRNLParams.rateToAttenuationFactor = .0055; % strength of MOC
rmeddis@38 110
rmeddis@38 111 % 'probability' model: MOC based on AN probability (HSR)
rmeddis@38 112 DRNLParams.MOCtauProb =.285; % smoothing for MOC
rmeddis@38 113 DRNLParams.rateToAttenuationFactorProb = 0.007; % strength of MOC
rmeddis@38 114 DRNLParams.MOCrateThresholdProb =67; % spikes/s probability only
rmeddis@38 115
rmeddis@38 116
rmeddis@38 117 %% #4 IHC_cilia_RPParams
rmeddis@38 118 IHC_cilia_RPParams.tc= 0.00012; % 0.0003 Shamma
rmeddis@38 119 IHC_cilia_RPParams.C= 0.08; % 0.1 scalar (C_cilia )
rmeddis@38 120 IHC_cilia_RPParams.u0= 5e-9;
rmeddis@38 121 IHC_cilia_RPParams.s0= 30e-9;
rmeddis@38 122 IHC_cilia_RPParams.u1= 1e-9;
rmeddis@38 123 IHC_cilia_RPParams.s1= 1e-9;
rmeddis@38 124
rmeddis@38 125 IHC_cilia_RPParams.Gmax= 6e-9; % 2.5e-9 maximum conductance (Siemens)
rmeddis@38 126 IHC_cilia_RPParams.Ga= 1e-9; % 4.3e-9 fixed apical membrane conductance
rmeddis@38 127 IHC_cilia_RPParams.Ga= .8e-9; % 4.3e-9 fixed apical membrane conductance
rmeddis@38 128
rmeddis@38 129 % #5 IHC_RP
rmeddis@38 130 IHC_cilia_RPParams.Cab= 4e-012; % IHC capacitance (F)
rmeddis@38 131 % IHC_cilia_RPParams.Cab= 1e-012; % IHC capacitance (F)
rmeddis@38 132 IHC_cilia_RPParams.Et= 0.100; % endocochlear potential (V)
rmeddis@38 133
rmeddis@38 134 IHC_cilia_RPParams.Gk= 2e-008; % 1e-8 potassium conductance (S)
rmeddis@38 135 IHC_cilia_RPParams.Ek= -0.08; % -0.084 K equilibrium potential
rmeddis@38 136 IHC_cilia_RPParams.Rpc= 0.04; % combined resistances
rmeddis@38 137
rmeddis@38 138
rmeddis@38 139 %% #5 IHCpreSynapse
rmeddis@38 140 IHCpreSynapseParams=[];
rmeddis@38 141 IHCpreSynapseParams.GmaxCa= 14e-9;% maximum calcium conductance
rmeddis@38 142 % IHCpreSynapseParams.GmaxCa= 12e-9;% maximum calcium conductance
rmeddis@38 143 IHCpreSynapseParams.ECa= 0.066; % calcium equilibrium potential
rmeddis@38 144 IHCpreSynapseParams.beta= 400; % determine Ca channel opening
rmeddis@38 145 IHCpreSynapseParams.gamma= 100; % determine Ca channel opening
rmeddis@38 146 IHCpreSynapseParams.tauM= 0.00005; % membrane time constant ?0.1ms
rmeddis@38 147 IHCpreSynapseParams.power= 3;
rmeddis@38 148 % reminder: changing z has a strong effect on HF thresholds (like Et)
rmeddis@38 149 IHCpreSynapseParams.z= 2e42; % scalar Ca -> vesicle release rate
rmeddis@38 150
rmeddis@38 151 LSRtauCa=30e-6; HSRtauCa=80e-6; % seconds
rmeddis@38 152 % LSRtauCa=40e-6; HSRtauCa=90e-6; % seconds
rmeddis@38 153 % IHCpreSynapseParams.tauCa= [15e-6 80e-6]; %LSR and HSR fiber
rmeddis@38 154 IHCpreSynapseParams.tauCa= [LSRtauCa HSRtauCa]; %LSR and HSR fiber
rmeddis@38 155
rmeddis@38 156 %% #6 AN_IHCsynapse
rmeddis@38 157 AN_IHCsynapseParams=[]; % clear the structure first
rmeddis@38 158 % number of AN fibers at each BF (used only for spike generation)
rmeddis@38 159 AN_IHCsynapseParams.numFibers= 100;
rmeddis@38 160 % absolute refractory period. Relative refractory period is the same.
rmeddis@38 161 AN_IHCsynapseParams.refractory_period= 0.00075;
rmeddis@38 162 AN_IHCsynapseParams.TWdelay=0.004; % ?delay before stimulus first spike
rmeddis@38 163 AN_IHCsynapseParams.spikesTargetSampleRate=sampleRate;
rmeddis@38 164 % AN_IHCsynapseParams.ANspeedUpFactor=5; % longer epochs for computing spikes.
rmeddis@38 165
rmeddis@38 166 % c=kym/(y(l+r)+kl) (spontaneous rate)
rmeddis@38 167 % c=(approx) ym/l (saturated rate)
rmeddis@38 168 AN_IHCsynapseParams.M= 12; % maximum vesicles at synapse
rmeddis@38 169 AN_IHCsynapseParams.y= 4; % depleted vesicle replacement rate
rmeddis@38 170 AN_IHCsynapseParams.y= 6; % depleted vesicle replacement rate
rmeddis@38 171
rmeddis@38 172 AN_IHCsynapseParams.x= 30; % replenishment from re-uptake store
rmeddis@38 173 AN_IHCsynapseParams.x= 60; % replenishment from re-uptake store
rmeddis@38 174
rmeddis@38 175 % reduce l to increase saturated rate
rmeddis@38 176 AN_IHCsynapseParams.l= 100; % *loss rate of vesicles from the cleft
rmeddis@38 177 AN_IHCsynapseParams.l= 250; % *loss rate of vesicles from the cleft
rmeddis@38 178
rmeddis@38 179 AN_IHCsynapseParams.r= 500; % *reuptake rate from cleft into cell
rmeddis@38 180 % AN_IHCsynapseParams.r= 300; % *reuptake rate from cleft into cell
rmeddis@38 181
rmeddis@38 182
rmeddis@38 183 %% #7 MacGregorMulti (first order brainstem neurons)
rmeddis@38 184 MacGregorMultiParams=[];
rmeddis@38 185 % MacGregorMultiType='chopper'; % MacGregorMultiType='primary-like'; %choose
rmeddis@38 186 MacGregorMultiType='primary-like'; % MacGregorMultiType='primary-like'; %choose
rmeddis@38 187 switch MacGregorMultiType
rmeddis@38 188 case 'primary-like'
rmeddis@38 189 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
rmeddis@38 190 MacGregorMultiParams.type = 'primary-like cell';
rmeddis@38 191 MacGregorMultiParams.fibersPerNeuron=4; % N input fibers
rmeddis@38 192 MacGregorMultiParams.dendriteLPfreq=500; % dendritic filter
rmeddis@38 193 MacGregorMultiParams.currentPerSpike=0.11e-6; % (A) per spike
rmeddis@38 194 MacGregorMultiParams.Cap=4.55e-9; % cell capacitance (Siemens)
rmeddis@38 195 MacGregorMultiParams.tauM=5e-4; % membrane time constant (s)
rmeddis@38 196 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@38 197 MacGregorMultiParams.dGkSpike=3.64e-5; % K+ cond.shift on spike,S
rmeddis@38 198 MacGregorMultiParams.tauGk= 0.0005; % K+ conductance tau (s)
rmeddis@38 199 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@38 200 MacGregorMultiParams.c= 0.01; % threshold shift on spike, (V)
rmeddis@38 201 MacGregorMultiParams.tauTh= 0.015; % variable threshold tau
rmeddis@38 202 MacGregorMultiParams.Er=-0.06; % resting potential (V)
rmeddis@38 203 MacGregorMultiParams.Eb=0.06; % spike height (V)
rmeddis@38 204
rmeddis@38 205 case 'chopper'
rmeddis@38 206 MacGregorMultiParams.nNeuronsPerBF= 10; % N neurons per BF
rmeddis@38 207 MacGregorMultiParams.type = 'chopper cell';
rmeddis@38 208 MacGregorMultiParams.fibersPerNeuron=10; % N input fibers
rmeddis@38 209
rmeddis@38 210 MacGregorMultiParams.dendriteLPfreq=50; % dendritic filter
rmeddis@38 211 MacGregorMultiParams.currentPerSpike=28e-9; % *per spike
rmeddis@38 212 % MacGregorMultiParams.currentPerSpike=30e-9; % *per spike
rmeddis@38 213
rmeddis@38 214 MacGregorMultiParams.Cap=1.67e-8; % ??cell capacitance (Siemens)
rmeddis@38 215 MacGregorMultiParams.tauM=0.002; % membrane time constant (s)
rmeddis@38 216 MacGregorMultiParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@38 217 MacGregorMultiParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
rmeddis@38 218 MacGregorMultiParams.tauGk= 0.0005;% K+ conductance tau (s)
rmeddis@38 219 MacGregorMultiParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@38 220 MacGregorMultiParams.c= 0; % threshold shift on spike, (V)
rmeddis@38 221 MacGregorMultiParams.tauTh= 0.02; % variable threshold tau
rmeddis@38 222 MacGregorMultiParams.Er=-0.06; % resting potential (V)
rmeddis@38 223 MacGregorMultiParams.Eb=0.06; % spike height (V)
rmeddis@38 224 MacGregorMultiParams.PSTHbinWidth= 1e-4;
rmeddis@38 225 end
rmeddis@38 226
rmeddis@38 227 %% #8 MacGregor (second-order neuron). Only one per channel
rmeddis@38 228 MacGregorParams=[]; % clear the structure first
rmeddis@38 229 MacGregorParams.type = 'chopper cell';
rmeddis@38 230 MacGregorParams.fibersPerNeuron=10; % N input fibers
rmeddis@38 231 MacGregorParams.dendriteLPfreq=100; % dendritic filter
rmeddis@38 232 MacGregorParams.currentPerSpike=40e-9;% *(A) per spike
rmeddis@38 233
rmeddis@38 234 MacGregorParams.Cap=16.7e-9; % cell capacitance (Siemens)
rmeddis@38 235 MacGregorParams.tauM=0.002; % membrane time constant (s)
rmeddis@38 236 MacGregorParams.Ek=-0.01; % K+ eq. potential (V)
rmeddis@38 237 MacGregorParams.dGkSpike=1.33e-4; % K+ cond.shift on spike,S
rmeddis@38 238 MacGregorParams.tauGk= 0.0012; % K+ conductance tau (s)
rmeddis@38 239 MacGregorParams.Th0= 0.01; % equilibrium threshold (V)
rmeddis@38 240 MacGregorParams.c= 0; % threshold shift on spike, (V)
rmeddis@38 241 MacGregorParams.tauTh= 0.02; % variable threshold tau
rmeddis@38 242 MacGregorParams.Er=-0.06; % resting potential (V)
rmeddis@38 243 MacGregorParams.Eb=0.06; % spike height (V)
rmeddis@38 244 MacGregorParams.debugging=0; % (special)
rmeddis@38 245 % wideband accepts input from all channels (of same fiber type)
rmeddis@38 246 % use wideband to create inhibitory units
rmeddis@38 247 MacGregorParams.wideband=0; % special for wideband units
rmeddis@38 248 % MacGregorParams.saveAllData=0;
rmeddis@38 249
rmeddis@38 250 %% #9 filteredSACF
rmeddis@38 251 minPitch= 300; maxPitch= 3000; numPitches=60; % specify lags
rmeddis@38 252 pitches=100*log10(logspace(minPitch/100, maxPitch/100, numPitches));
rmeddis@38 253 filteredSACFParams.lags=1./pitches; % autocorrelation lags vector
rmeddis@38 254 filteredSACFParams.acfTau= .003; % time constant of running ACF
rmeddis@38 255 filteredSACFParams.lambda= 0.12; % slower filter to smooth ACF
rmeddis@38 256 filteredSACFParams.plotFilteredSACF=1; % 0 plots unfiltered ACFs
rmeddis@38 257 filteredSACFParams.plotACFs=0; % special plot (see code)
rmeddis@38 258 % filteredSACFParams.usePressnitzer=0; % attenuates ACF at long lags
rmeddis@38 259 filteredSACFParams.lagsProcedure= 'useAllLags';
rmeddis@38 260 % filteredSACFParams.lagsProcedure= 'omitShortLags';
rmeddis@38 261 filteredSACFParams.criterionForOmittingLags=3;
rmeddis@38 262
rmeddis@38 263 % checks
rmeddis@38 264 if AN_IHCsynapseParams.numFibers<MacGregorMultiParams.fibersPerNeuron
rmeddis@38 265 error('MacGregorMulti: too few input fibers for input to MacG unit')
rmeddis@38 266 end
rmeddis@38 267
rmeddis@38 268
rmeddis@38 269 %% now accept last minute parameter changes required by the calling program
rmeddis@38 270 % paramChanges
rmeddis@38 271 if nargin>3 && ~isempty(paramChanges)
rmeddis@38 272 if ~iscellstr(paramChanges)
rmeddis@38 273 error('paramChanges error: paramChanges not a cell array')
rmeddis@38 274 end
rmeddis@38 275
rmeddis@38 276 nChanges=length(paramChanges);
rmeddis@38 277 for idx=1:nChanges
rmeddis@38 278 x=paramChanges{idx};
rmeddis@38 279 x=deblank(x);
rmeddis@38 280 if ~isempty(x)
rmeddis@38 281 if ~strcmp(x(end),';')
rmeddis@38 282 error(['paramChanges error (terminate with semicolon) ' x])
rmeddis@38 283 end
rmeddis@38 284 st=strtrim(x(1:strfind(x,'.')-1));
rmeddis@38 285 fld=strtrim(x(strfind(x,'.')+1:strfind(x,'=')-1));
rmeddis@38 286 value=x(strfind(x,'=')+1:end);
rmeddis@38 287 if isempty(st) || isempty(fld) || isempty(value)
rmeddis@38 288 error(['paramChanges error:' x])
rmeddis@38 289 end
rmeddis@38 290
rmeddis@38 291 x1=eval(['isstruct(' st ')']);
rmeddis@38 292 cmd=['isfield(' st ',''' fld ''')'];
rmeddis@38 293 x2=eval(cmd);
rmeddis@38 294 if ~(x1*x2)
rmeddis@38 295 error(['paramChanges error:' x])
rmeddis@38 296 end
rmeddis@38 297 end
rmeddis@38 298
rmeddis@38 299 % no problems so go ahead
rmeddis@38 300 eval(paramChanges{idx})
rmeddis@38 301 end
rmeddis@38 302 end
rmeddis@38 303
rmeddis@38 304
rmeddis@38 305 %% write all parameters to the command window
rmeddis@38 306 % showParams is currently set at the top of htis function
rmeddis@38 307 if showParams
rmeddis@38 308 fprintf('\n %%%%%%%%\n')
rmeddis@38 309 fprintf('\n%s\n', method.parameterSource)
rmeddis@38 310 fprintf('\n')
rmeddis@38 311 nm=UTIL_paramsList(whos);
rmeddis@38 312 for i=1:length(nm)
rmeddis@38 313 % eval(['UTIL_showStruct(' nm{i} ', ''' nm{i} ''')'])
rmeddis@38 314 if ~strcmp(nm(i), 'method')
rmeddis@38 315 eval(['UTIL_showStructureSummary(' nm{i} ', ''' nm{i} ''', 10)'])
rmeddis@38 316 end
rmeddis@38 317 end
rmeddis@38 318
rmeddis@38 319 % highlight parameter changes made locally
rmeddis@38 320 if nargin>3 && ~isempty(paramChanges)
rmeddis@38 321 fprintf('\n Local parameter changes:\n')
rmeddis@38 322 for i=1:length(paramChanges)
rmeddis@38 323 disp(paramChanges{i})
rmeddis@38 324 end
rmeddis@38 325 end
rmeddis@38 326 end
rmeddis@38 327
rmeddis@38 328 % for backward compatibility
rmeddis@38 329 experiment.comparisonData=[];