annotate MAP/MAP1_14.m @ 9:ecad0ea62b43

May27 mainly better parameters
author Ray Meddis <rmeddis@essex.ac.uk>
date Tue, 31 May 2011 09:13:07 +0100
parents eafe11c86f44
children 9fd4960e743a
rev   line source
rmeddis@0 1
rmeddis@0 2 function MAP1_14(inputSignal, sampleRate, BFlist, MAPparamsName, ...
rmeddis@0 3 AN_spikesOrProbability, paramChanges)
rmeddis@0 4 % To test this function use test_MAP1_14 in this folder
rmeddis@0 5 %
rmeddis@0 6 % All arguments are mandatory.
rmeddis@0 7 %
rmeddis@0 8 % BFlist is a list of BFs but can be '-1' to allow MAPparams to choose
rmeddis@0 9 %
rmeddis@0 10
rmeddis@0 11 % MAPparamsName='Normal'; % source of model parameters
rmeddis@0 12 % AN_spikesOrProbability='spikes'; % or 'probability'
rmeddis@0 13 % paramChanges is a cell array of strings that can be used to make last
rmeddis@0 14 % minute parameter changes, e.g., to simulate OHC loss
rmeddis@0 15 % paramChanges{1}= 'DRNLParams.a=0;';
rmeddis@0 16
rmeddis@0 17 % The model parameters are established in the MAPparams<***> file
rmeddis@0 18 % and stored as global
rmeddis@0 19
rmeddis@0 20 restorePath=path;
rmeddis@0 21 addpath (['..' filesep 'parameterStore'])
rmeddis@0 22
rmeddis@0 23 global OMEParams DRNLParams IHC_cilia_RPParams IHCpreSynapseParams
rmeddis@0 24 global AN_IHCsynapseParams MacGregorParams MacGregorMultiParams
rmeddis@0 25
rmeddis@0 26 % All of the results of this function are stored as global
rmeddis@0 27 global dt ANdt savedBFlist saveAN_spikesOrProbability saveMAPparamsName...
rmeddis@0 28 savedInputSignal OMEextEarPressure TMoutput OMEoutput ARattenuation ...
rmeddis@0 29 DRNLoutput IHC_cilia_output IHCrestingCiliaCond IHCrestingV...
rmeddis@0 30 IHCoutput ANprobRateOutput ANoutput savePavailable tauCas ...
rmeddis@0 31 CNoutput ICoutput ICmembraneOutput ICfiberTypeRates MOCattenuation
rmeddis@0 32
rmeddis@0 33 % Normally only ICoutput(logical spike matrix) or ANprobRateOutput will be
rmeddis@0 34 % needed by the user; so the following will suffice
rmeddis@0 35 % global ANdt ICoutput ANprobRateOutput
rmeddis@0 36
rmeddis@0 37 % Note that sampleRate has not changed from the original function call and
rmeddis@0 38 % ANprobRateOutput is sampled at this rate
rmeddis@0 39 % However ANoutput, CNoutput and IC output are stored as logical
rmeddis@0 40 % 'spike' matrices using a lower sample rate (see ANdt).
rmeddis@0 41
rmeddis@0 42 % When AN_spikesOrProbability is set to probability,
rmeddis@0 43 % no spike matrices are computed.
rmeddis@0 44 % When AN_spikesOrProbability is set to 'spikes',
rmeddis@0 45 % no probability output is computed
rmeddis@0 46
rmeddis@0 47 % Efferent control variables are ARattenuation and MOCattenuation
rmeddis@0 48 % These are scalars between 1 (no attenuation) and 0.
rmeddis@0 49 % They are represented with dt=1/sampleRate (not ANdt)
rmeddis@0 50 % They are computed using either AN probability rate output
rmeddis@0 51 % or IC (spikes) output as approrpriate.
rmeddis@0 52 % AR is computed using across channel activity
rmeddis@0 53 % MOC is computed on a within-channel basis.
rmeddis@0 54
rmeddis@0 55
rmeddis@0 56 % save as global for later plotting if required
rmeddis@0 57 savedBFlist=BFlist;
rmeddis@0 58 saveAN_spikesOrProbability=AN_spikesOrProbability;
rmeddis@0 59 saveMAPparamsName=MAPparamsName;
rmeddis@0 60
rmeddis@0 61 % Read parameters from MAPparams<***> file in 'parameterStore' folder
rmeddis@0 62 cmd=['method=MAPparams' MAPparamsName ...
rmeddis@0 63 '(BFlist, sampleRate, 0);'];
rmeddis@0 64 eval(cmd);
rmeddis@0 65
rmeddis@0 66 % Beware, 'BFlist=-1' is a legitimate argument for MAPparams<>
rmeddis@0 67 % if the calling program allows MAPparams to specify the list
rmeddis@0 68 BFlist=DRNLParams.nonlinCFs;
rmeddis@0 69
rmeddis@0 70 % now accept last mintue parameter changes required by the calling program
rmeddis@0 71 if nargin>5 && ~isempty(paramChanges)
rmeddis@0 72 nChanges=length(paramChanges);
rmeddis@0 73 for idx=1:nChanges
rmeddis@0 74 eval(paramChanges{idx})
rmeddis@0 75 end
rmeddis@0 76 end
rmeddis@0 77
rmeddis@0 78 dt=1/sampleRate;
rmeddis@0 79 duration=length(inputSignal)/sampleRate;
rmeddis@0 80 % segmentDuration is specified in parameter file (must be >efferent delay)
rmeddis@0 81 segmentDuration=method.segmentDuration;
rmeddis@0 82 segmentLength=round(segmentDuration/ dt);
rmeddis@0 83 segmentTime=dt*(1:segmentLength); % used in debugging plots
rmeddis@0 84
rmeddis@0 85 % all spiking activity is computed using longer epochs
rmeddis@0 86 ANspeedUpFactor=5; % 5 times longer
rmeddis@0 87
rmeddis@0 88 % inputSignal must be row vector
rmeddis@0 89 [r c]=size(inputSignal);
rmeddis@0 90 if r>c, inputSignal=inputSignal'; end % transpose
rmeddis@0 91 % ignore stereo signals
rmeddis@0 92 inputSignal=inputSignal(1,:); % drop any second channel
rmeddis@0 93 savedInputSignal=inputSignal;
rmeddis@0 94
rmeddis@0 95 % Segment the signal
rmeddis@0 96 % The sgment length is given but the signal length must be adjusted to be a
rmeddis@0 97 % multiple of both the segment length and the reduced segmentlength
rmeddis@0 98 [nSignalRows signalLength]=size(inputSignal);
rmeddis@0 99 segmentLength=ceil(segmentLength/ANspeedUpFactor)*ANspeedUpFactor;
rmeddis@0 100 % Make the signal length a whole multiple of the segment length
rmeddis@0 101 nSignalSegments=ceil(signalLength/segmentLength);
rmeddis@0 102 padSize=nSignalSegments*segmentLength-signalLength;
rmeddis@0 103 pad=zeros(nSignalRows,padSize);
rmeddis@0 104 inputSignal=[inputSignal pad];
rmeddis@0 105 [ignore signalLength]=size(inputSignal);
rmeddis@0 106
rmeddis@0 107 % AN (spikes) is computed at a lower sample rate when spikes required
rmeddis@0 108 % so it has a reduced segment length (see 'ANspeeUpFactor' above)
rmeddis@0 109 % AN CN and IC all use this sample interval
rmeddis@0 110 ANdt=dt*ANspeedUpFactor;
rmeddis@0 111 reducedSegmentLength=round(segmentLength/ANspeedUpFactor);
rmeddis@0 112 reducedSignalLength= round(signalLength/ANspeedUpFactor);
rmeddis@0 113
rmeddis@0 114 %% Initialise with respect to each stage before computing
rmeddis@0 115 % by allocating memory,
rmeddis@0 116 % by computing constants
rmeddis@0 117 % by establishing easy to read variable names
rmeddis@0 118 % The computations are made in segments and boundary conditions must
rmeddis@0 119 % be established and stored. These are found in variables with
rmeddis@0 120 % 'boundary' or 'bndry' in the name
rmeddis@0 121
rmeddis@0 122 %% OME ---
rmeddis@0 123 % external ear resonances
rmeddis@0 124 OMEexternalResonanceFilters=OMEParams.externalResonanceFilters;
rmeddis@0 125 [nOMEExtFilters c]=size(OMEexternalResonanceFilters);
rmeddis@0 126 % details of external (outer ear) resonances
rmeddis@0 127 OMEgaindBs=OMEexternalResonanceFilters(:,1);
rmeddis@0 128 OMEgainScalars=10.^(OMEgaindBs/20);
rmeddis@0 129 OMEfilterOrder=OMEexternalResonanceFilters(:,2);
rmeddis@0 130 OMElowerCutOff=OMEexternalResonanceFilters(:,3);
rmeddis@0 131 OMEupperCutOff=OMEexternalResonanceFilters(:,4);
rmeddis@0 132 % external resonance coefficients
rmeddis@0 133 ExtFilter_b=cell(nOMEExtFilters,1);
rmeddis@0 134 ExtFilter_a=cell(nOMEExtFilters,1);
rmeddis@0 135 for idx=1:nOMEExtFilters
rmeddis@0 136 Nyquist=sampleRate/2;
rmeddis@0 137 [b, a] = butter(OMEfilterOrder(idx), ...
rmeddis@0 138 [OMElowerCutOff(idx) OMEupperCutOff(idx)]...
rmeddis@0 139 /Nyquist);
rmeddis@0 140 ExtFilter_b{idx}=b;
rmeddis@0 141 ExtFilter_a{idx}=a;
rmeddis@0 142 end
rmeddis@0 143 OMEExtFilterBndry=cell(2,1);
rmeddis@0 144 OMEextEarPressure=zeros(1,signalLength); % pressure at tympanic membrane
rmeddis@0 145
rmeddis@0 146 % pressure to velocity conversion using smoothing filter (50 Hz cutoff)
rmeddis@0 147 tau=1/(2*pi*50);
rmeddis@0 148 a1=dt/tau-1; a0=1;
rmeddis@0 149 b0=1+ a1;
rmeddis@0 150 TMdisp_b=b0; TMdisp_a=[a0 a1];
rmeddis@0 151 % figure(9), freqz(TMdisp_b, TMdisp_a)
rmeddis@0 152 OME_TMdisplacementBndry=[];
rmeddis@0 153
rmeddis@0 154 % OME high pass (simulates poor low frequency stapes response)
rmeddis@0 155 OMEhighPassHighCutOff=OMEParams.OMEstapesLPcutoff;
rmeddis@0 156 Nyquist=sampleRate/2;
rmeddis@0 157 [stapesDisp_b,stapesDisp_a] = butter(1, OMEhighPassHighCutOff/Nyquist, 'high');
rmeddis@0 158 % figure(10), freqz(stapesDisp_b, stapesDisp_a)
rmeddis@0 159
rmeddis@0 160 OMEhighPassBndry=[];
rmeddis@0 161
rmeddis@0 162 % OMEampStapes might be reducdant (use OMEParams.stapesScalar)
rmeddis@0 163 stapesScalar= OMEParams.stapesScalar;
rmeddis@0 164
rmeddis@0 165 % Acoustic reflex
rmeddis@0 166 efferentDelayPts=round(OMEParams.ARdelay/dt);
rmeddis@0 167 % smoothing filter
rmeddis@0 168 % Nyquist=(1/ANdt)/2;
rmeddis@0 169 % [ARfilt_b,ARfilt_a] = butter(1, (1/(2*pi*OMEParams.ARtau))/Nyquist, 'low');
rmeddis@0 170 a1=dt/OMEParams.ARtau-1; a0=1;
rmeddis@0 171 b0=1+ a1;
rmeddis@0 172 ARfilt_b=b0; ARfilt_a=[a0 a1];
rmeddis@0 173
rmeddis@0 174 ARattenuation=ones(1,signalLength);
rmeddis@0 175 ARrateThreshold=OMEParams.ARrateThreshold; % may not be used
rmeddis@0 176 ARrateToAttenuationFactor=OMEParams.rateToAttenuationFactor;
rmeddis@0 177 ARrateToAttenuationFactorProb=OMEParams.rateToAttenuationFactorProb;
rmeddis@0 178 ARboundary=[];
rmeddis@0 179 ARboundaryProb=0;
rmeddis@0 180
rmeddis@0 181 % save complete OME record (stapes displacement)
rmeddis@0 182 OMEoutput=zeros(1,signalLength);
rmeddis@0 183 TMoutput=zeros(1,signalLength);
rmeddis@0 184
rmeddis@0 185 %% BM ---
rmeddis@0 186 % BM is represented as a list of locations identified by BF
rmeddis@0 187 DRNL_BFs=BFlist;
rmeddis@0 188 nBFs= length(DRNL_BFs);
rmeddis@0 189
rmeddis@0 190 % DRNLchannelParameters=DRNLParams.channelParameters;
rmeddis@0 191 DRNLresponse= zeros(nBFs, segmentLength);
rmeddis@0 192
rmeddis@0 193 MOCrateToAttenuationFactor=DRNLParams.rateToAttenuationFactor;
rmeddis@0 194 rateToAttenuationFactorProb=DRNLParams.rateToAttenuationFactorProb;
rmeddis@0 195 MOCrateThreshold=DRNLParams.MOCrateThreshold;
rmeddis@0 196
rmeddis@0 197 % smoothing filter for MOC
rmeddis@0 198 % Nyquist=(1/ANdt)/2;
rmeddis@0 199 % [MOCfilt_b,MOCfilt_a] = ...
rmeddis@0 200 % butter(1, (1/(2*pi*DRNLParams.MOCtau))/Nyquist, 'low');
rmeddis@0 201 % figure(10), freqz(stapesDisp_b, stapesDisp_a)
rmeddis@0 202 a1=dt/DRNLParams.MOCtau-1; a0=1;
rmeddis@0 203 b0=1+ a1;
rmeddis@0 204 MOCfilt_b=b0; MOCfilt_a=[a0 a1];
rmeddis@0 205 % figure(9), freqz(stapesDisp_b, stapesDisp_a)
rmeddis@0 206 MOCboundary=cell(nBFs,1);
rmeddis@0 207 MOCprobBoundary=cell(nBFs,1);
rmeddis@0 208
rmeddis@0 209 MOCattSegment=zeros(nBFs,reducedSegmentLength);
rmeddis@0 210 MOCattenuation=ones(nBFs,signalLength);
rmeddis@0 211
rmeddis@0 212 if DRNLParams.a>0
rmeddis@0 213 DRNLcompressionThreshold=10^((1/(1-DRNLParams.c))* ...
rmeddis@0 214 log10(DRNLParams.b/DRNLParams.a));
rmeddis@0 215 else
rmeddis@0 216 DRNLcompressionThreshold=inf;
rmeddis@0 217 end
rmeddis@0 218
rmeddis@0 219 DRNLlinearOrder= DRNLParams.linOrder;
rmeddis@0 220 DRNLnonlinearOrder= DRNLParams.nonlinOrder;
rmeddis@0 221
rmeddis@0 222 DRNLa=DRNLParams.a;
rmeddis@0 223 DRNLb=DRNLParams.b;
rmeddis@0 224 DRNLc=DRNLParams.c;
rmeddis@0 225 linGAIN=DRNLParams.g;
rmeddis@0 226 %
rmeddis@0 227 % gammatone filter coefficients for linear pathway
rmeddis@0 228 bw=DRNLParams.linBWs';
rmeddis@0 229 phi = 2 * pi * bw * dt;
rmeddis@0 230 cf=DRNLParams.linCFs';
rmeddis@0 231 theta = 2 * pi * cf * dt;
rmeddis@0 232 cos_theta = cos(theta);
rmeddis@0 233 sin_theta = sin(theta);
rmeddis@0 234 alpha = -exp(-phi).* cos_theta;
rmeddis@0 235 b0 = ones(nBFs,1);
rmeddis@0 236 b1 = 2 * alpha;
rmeddis@0 237 b2 = exp(-2 * phi);
rmeddis@0 238 z1 = (1 + alpha .* cos_theta) - (alpha .* sin_theta) * i;
rmeddis@0 239 z2 = (1 + b1 .* cos_theta) - (b1 .* sin_theta) * i;
rmeddis@0 240 z3 = (b2 .* cos(2 * theta)) - (b2 .* sin(2 * theta)) * i;
rmeddis@0 241 tf = (z2 + z3) ./ z1;
rmeddis@0 242 a0 = abs(tf);
rmeddis@0 243 a1 = alpha .* a0;
rmeddis@0 244 GTlin_a = [b0, b1, b2];
rmeddis@0 245 GTlin_b = [a0, a1];
rmeddis@0 246 GTlinOrder=DRNLlinearOrder;
rmeddis@0 247 GTlinBdry=cell(nBFs,GTlinOrder);
rmeddis@0 248
rmeddis@0 249 % nonlinear gammatone filter coefficients
rmeddis@0 250 bw=DRNLParams.nlBWs';
rmeddis@0 251 phi = 2 * pi * bw * dt;
rmeddis@0 252 cf=DRNLParams.nonlinCFs';
rmeddis@0 253 theta = 2 * pi * cf * dt;
rmeddis@0 254 cos_theta = cos(theta);
rmeddis@0 255 sin_theta = sin(theta);
rmeddis@0 256 alpha = -exp(-phi).* cos_theta;
rmeddis@0 257 b0 = ones(nBFs,1);
rmeddis@0 258 b1 = 2 * alpha;
rmeddis@0 259 b2 = exp(-2 * phi);
rmeddis@0 260 z1 = (1 + alpha .* cos_theta) - (alpha .* sin_theta) * i;
rmeddis@0 261 z2 = (1 + b1 .* cos_theta) - (b1 .* sin_theta) * i;
rmeddis@0 262 z3 = (b2 .* cos(2 * theta)) - (b2 .* sin(2 * theta)) * i;
rmeddis@0 263 tf = (z2 + z3) ./ z1;
rmeddis@0 264 a0 = abs(tf);
rmeddis@0 265 a1 = alpha .* a0;
rmeddis@0 266 GTnonlin_a = [b0, b1, b2];
rmeddis@0 267 GTnonlin_b = [a0, a1];
rmeddis@0 268 GTnonlinOrder=DRNLnonlinearOrder;
rmeddis@0 269 GTnonlinBdry1=cell(nBFs, GTnonlinOrder);
rmeddis@0 270 GTnonlinBdry2=cell(nBFs, GTnonlinOrder);
rmeddis@0 271
rmeddis@0 272 % complete BM record (BM displacement)
rmeddis@0 273 DRNLoutput=zeros(nBFs, signalLength);
rmeddis@0 274
rmeddis@0 275
rmeddis@0 276 %% IHC ---
rmeddis@0 277 % IHC cilia activity and receptor potential
rmeddis@0 278 % viscous coupling between BM and stereocilia displacement
rmeddis@0 279 % Nyquist=sampleRate/2;
rmeddis@0 280 % IHCcutoff=1/(2*pi*IHC_cilia_RPParams.tc);
rmeddis@0 281 % [IHCciliaFilter_b,IHCciliaFilter_a]=...
rmeddis@0 282 % butter(1, IHCcutoff/Nyquist, 'high');
rmeddis@0 283 a1=dt/IHC_cilia_RPParams.tc-1; a0=1;
rmeddis@0 284 b0=1+ a1;
rmeddis@0 285 % high pass (i.e. low pass reversed)
rmeddis@0 286 IHCciliaFilter_b=[a0 a1]; IHCciliaFilter_a=b0;
rmeddis@0 287 % figure(9), freqz(IHCciliaFilter_b, IHCciliaFilter_a)
rmeddis@0 288
rmeddis@0 289 IHCciliaBndry=cell(nBFs,1);
rmeddis@0 290
rmeddis@0 291 % IHC apical conductance (Boltzman function)
rmeddis@0 292 IHC_C= IHC_cilia_RPParams.C;
rmeddis@0 293 IHCu0= IHC_cilia_RPParams.u0;
rmeddis@0 294 IHCu1= IHC_cilia_RPParams.u1;
rmeddis@0 295 IHCs0= IHC_cilia_RPParams.s0;
rmeddis@0 296 IHCs1= IHC_cilia_RPParams.s1;
rmeddis@0 297 IHCGmax= IHC_cilia_RPParams.Gmax;
rmeddis@8 298 IHCGa= IHC_cilia_RPParams.Ga; % (leakage)
rmeddis@8 299
rmeddis@8 300 IHCGu0 = IHCGa+IHCGmax./(1+exp(IHCu0/IHCs0).*(1+exp(IHCu1/IHCs1)));
rmeddis@9 301 IHCrestingCiliaCond=IHCGu0;
rmeddis@0 302
rmeddis@0 303 % Receptor potential
rmeddis@0 304 IHC_Cab= IHC_cilia_RPParams.Cab;
rmeddis@0 305 IHC_Gk= IHC_cilia_RPParams.Gk;
rmeddis@0 306 IHC_Et= IHC_cilia_RPParams.Et;
rmeddis@0 307 IHC_Ek= IHC_cilia_RPParams.Ek;
rmeddis@0 308 IHC_Ekp= IHC_Ek+IHC_Et*IHC_cilia_RPParams.Rpc;
rmeddis@0 309
rmeddis@9 310 IHCrestingV= (IHC_Gk*IHC_Ekp+IHCGu0*IHC_Et)/(IHCGu0+IHC_Gk);
rmeddis@8 311
rmeddis@0 312 IHC_Vnow= IHCrestingV*ones(nBFs,1); % initial voltage
rmeddis@0 313 IHC_RP= zeros(nBFs,segmentLength);
rmeddis@0 314
rmeddis@0 315 % complete record of IHC receptor potential (V)
rmeddis@0 316 IHCciliaDisplacement= zeros(nBFs,segmentLength);
rmeddis@0 317 IHCoutput= zeros(nBFs,signalLength);
rmeddis@0 318 IHC_cilia_output= zeros(nBFs,signalLength);
rmeddis@0 319
rmeddis@0 320
rmeddis@0 321 %% pre-synapse ---
rmeddis@0 322 % Each BF is replicated using a different fiber type to make a 'channel'
rmeddis@0 323 % The number of channels is nBFs x nANfiberTypes
rmeddis@0 324 % Fiber types are specified in terms of tauCa
rmeddis@0 325 nANfiberTypes= length(IHCpreSynapseParams.tauCa);
rmeddis@0 326 tauCas= IHCpreSynapseParams.tauCa;
rmeddis@0 327 nChannels= nANfiberTypes*nBFs;
rmeddis@0 328 synapticCa= zeros(nChannels,segmentLength);
rmeddis@0 329
rmeddis@0 330 % Calcium control (more calcium, greater release rate)
rmeddis@0 331 ECa=IHCpreSynapseParams.ECa;
rmeddis@0 332 gamma=IHCpreSynapseParams.gamma;
rmeddis@0 333 beta=IHCpreSynapseParams.beta;
rmeddis@0 334 tauM=IHCpreSynapseParams.tauM;
rmeddis@0 335 mICa=zeros(nChannels,segmentLength);
rmeddis@0 336 GmaxCa=IHCpreSynapseParams.GmaxCa;
rmeddis@0 337 synapse_z= IHCpreSynapseParams.z;
rmeddis@0 338 synapse_power=IHCpreSynapseParams.power;
rmeddis@0 339
rmeddis@0 340 % tauCa vector is established across channels to allow vectorization
rmeddis@0 341 % (one tauCa per channel). Do not confuse with tauCas (one pre fiber type)
rmeddis@0 342 tauCa=repmat(tauCas, nBFs,1);
rmeddis@0 343 tauCa=reshape(tauCa, nChannels, 1);
rmeddis@0 344
rmeddis@0 345 % presynapse startup values (vectors, length:nChannels)
rmeddis@0 346 % proportion (0 - 1) of Ca channels open at IHCrestingV
rmeddis@0 347 mICaCurrent=((1+beta^-1 * exp(-gamma*IHCrestingV))^-1)...
rmeddis@0 348 *ones(nBFs*nANfiberTypes,1);
rmeddis@0 349 % corresponding startup currents
rmeddis@0 350 ICaCurrent= (GmaxCa*mICaCurrent.^3) * (IHCrestingV-ECa);
rmeddis@0 351 CaCurrent= ICaCurrent.*tauCa;
rmeddis@0 352
rmeddis@0 353 % vesicle release rate at startup (one per channel)
rmeddis@0 354 % kt0 is used only at initialisation
rmeddis@0 355 kt0= -synapse_z * CaCurrent.^synapse_power;
rmeddis@0 356
rmeddis@0 357
rmeddis@0 358 %% AN ---
rmeddis@0 359 % each row of the AN matrices represents one AN fiber
rmeddis@0 360 % The results computed either for probabiities *or* for spikes (not both)
rmeddis@0 361 % Spikes are necessary if CN and IC are to be computed
rmeddis@0 362 nFibersPerChannel= AN_IHCsynapseParams.numFibers;
rmeddis@0 363 nANfibers= nChannels*nFibersPerChannel;
rmeddis@0 364
rmeddis@0 365 y=AN_IHCsynapseParams.y;
rmeddis@0 366 l=AN_IHCsynapseParams.l;
rmeddis@0 367 x=AN_IHCsynapseParams.x;
rmeddis@0 368 r=AN_IHCsynapseParams.r;
rmeddis@0 369 M=round(AN_IHCsynapseParams.M);
rmeddis@0 370
rmeddis@0 371 % probability (NB initial 'P' on everything)
rmeddis@0 372 PAN_ydt = repmat(AN_IHCsynapseParams.y*dt, nChannels,1);
rmeddis@0 373 PAN_ldt = repmat(AN_IHCsynapseParams.l*dt, nChannels,1);
rmeddis@0 374 PAN_xdt = repmat(AN_IHCsynapseParams.x*dt, nChannels,1);
rmeddis@0 375 PAN_rdt = repmat(AN_IHCsynapseParams.r*dt, nChannels,1);
rmeddis@0 376 PAN_rdt_plus_ldt = PAN_rdt + PAN_ldt;
rmeddis@0 377 PAN_M=round(AN_IHCsynapseParams.M);
rmeddis@0 378
rmeddis@0 379 % compute starting values
rmeddis@0 380 Pcleft = kt0* y* M ./ (y*(l+r)+ kt0* l);
rmeddis@0 381 Pavailable = Pcleft*(l+r)./kt0;
rmeddis@0 382 Preprocess = Pcleft*r/x; % canbe fractional
rmeddis@0 383
rmeddis@0 384 ANprobability=zeros(nChannels,segmentLength);
rmeddis@0 385 ANprobRateOutput=zeros(nChannels,signalLength);
rmeddis@0 386 % special variables for monitoring synaptic cleft (specialists only)
rmeddis@0 387 savePavailableSeg=zeros(nChannels,segmentLength);
rmeddis@0 388 savePavailable=zeros(nChannels,signalLength);
rmeddis@0 389
rmeddis@0 390 % spikes % ! ! ! ! ! ! ! !
rmeddis@0 391 AN_refractory_period= AN_IHCsynapseParams.refractory_period;
rmeddis@0 392 lengthAbsRefractory= round(AN_refractory_period/ANdt);
rmeddis@0 393
rmeddis@0 394 AN_ydt= repmat(AN_IHCsynapseParams.y*ANdt, nANfibers,1);
rmeddis@0 395 AN_ldt= repmat(AN_IHCsynapseParams.l*ANdt, nANfibers,1);
rmeddis@0 396 AN_xdt= repmat(AN_IHCsynapseParams.x*ANdt, nANfibers,1);
rmeddis@0 397 AN_rdt= repmat(AN_IHCsynapseParams.r*ANdt, nANfibers,1);
rmeddis@0 398 AN_rdt_plus_ldt= AN_rdt + AN_ldt;
rmeddis@0 399 AN_M= round(AN_IHCsynapseParams.M);
rmeddis@0 400
rmeddis@0 401 % kt0 is initial release rate
rmeddis@0 402 % Establish as a vector (length=channel x number of fibers)
rmeddis@0 403 kt0= repmat(kt0', nFibersPerChannel, 1);
rmeddis@0 404 kt0=reshape(kt0, nANfibers,1);
rmeddis@0 405
rmeddis@0 406 % starting values for reservoirs
rmeddis@0 407 AN_cleft = kt0* y* M ./ (y*(l+r)+ kt0* l);
rmeddis@0 408 AN_available = round(AN_cleft*(l+r)./kt0); %must be integer
rmeddis@0 409 AN_reprocess = AN_cleft*r/x;
rmeddis@0 410
rmeddis@0 411 % output is in a logical array spikes = 1/ 0.
rmeddis@0 412 ANspikes= false(nANfibers,reducedSegmentLength);
rmeddis@0 413 ANoutput= false(nANfibers,reducedSignalLength);
rmeddis@0 414
rmeddis@0 415
rmeddis@0 416 %% CN (first brain stem nucleus - could be any subdivision of CN)
rmeddis@0 417 % Input to a CN neuorn is a random selection of AN fibers within a channel
rmeddis@0 418 % The number of AN fibers used is ANfibersFanInToCN
rmeddis@0 419 ANfibersFanInToCN=MacGregorMultiParams.fibersPerNeuron;
rmeddis@0 420 nCNneuronsPerChannel=MacGregorMultiParams.nNeuronsPerBF;
rmeddis@0 421 % CNtauGk (Potassium time constant) determines the rate of firing of
rmeddis@0 422 % the unit when driven hard by a DC input (not normally >350 sp/s)
rmeddis@0 423 CNtauGk=MacGregorMultiParams.tauGk;
rmeddis@0 424 ANavailableFibersPerChan=AN_IHCsynapseParams.numFibers;
rmeddis@0 425 nCNneurons=nCNneuronsPerChannel*nChannels;
rmeddis@0 426 % nCNneuronsPerFiberType= nCNneurons/nANfiberTypes;
rmeddis@0 427
rmeddis@0 428 CNmembranePotential=zeros(nCNneurons,reducedSegmentLength);
rmeddis@0 429
rmeddis@0 430 % establish which ANfibers (by name) feed into which CN nuerons
rmeddis@0 431 CNinputfiberLists=zeros(nChannels*nCNneuronsPerChannel, ANfibersFanInToCN);
rmeddis@0 432 unitNo=1;
rmeddis@0 433 for ch=1:nChannels
rmeddis@0 434 % Each channel contains a number of units =length(listOfFanInValues)
rmeddis@0 435 for idx=1:nCNneuronsPerChannel
rmeddis@0 436 fibersUsed=(ch-1)*ANavailableFibersPerChan + ...
rmeddis@0 437 ceil(rand(1,ANfibersFanInToCN)* ANavailableFibersPerChan);
rmeddis@0 438 CNinputfiberLists(unitNo,:)=fibersUsed;
rmeddis@0 439 unitNo=unitNo+1;
rmeddis@0 440 end
rmeddis@0 441 end
rmeddis@0 442
rmeddis@0 443 % input to CN units
rmeddis@0 444 AN_PSTH=zeros(nCNneurons,reducedSegmentLength);
rmeddis@0 445
rmeddis@0 446 % Generate CNalphaFunction function
rmeddis@0 447 % by which spikes are converted to post-synaptic currents
rmeddis@0 448 CNdendriteLPfreq= MacGregorMultiParams.dendriteLPfreq;
rmeddis@0 449 CNcurrentPerSpike=MacGregorMultiParams.currentPerSpike;
rmeddis@0 450 CNspikeToCurrentTau=1/(2*pi*CNdendriteLPfreq);
rmeddis@0 451 t=ANdt:ANdt:5*CNspikeToCurrentTau;
rmeddis@0 452 CNalphaFunction=...
rmeddis@0 453 (CNcurrentPerSpike/CNspikeToCurrentTau)*t.*exp(-t/CNspikeToCurrentTau);
rmeddis@0 454 % figure(98), plot(t,CNalphaFunction)
rmeddis@0 455 % working memory for implementing convolution
rmeddis@0 456 CNcurrentTemp=...
rmeddis@0 457 zeros(nCNneurons,reducedSegmentLength+length(CNalphaFunction)-1);
rmeddis@0 458 % trailing alphas are parts of humps carried forward to the next segment
rmeddis@0 459 CNtrailingAlphas=zeros(nCNneurons,length(CNalphaFunction));
rmeddis@0 460
rmeddis@0 461 CN_tauM=MacGregorMultiParams.tauM;
rmeddis@0 462 CN_tauTh=MacGregorMultiParams.tauTh;
rmeddis@0 463 CN_cap=MacGregorMultiParams.Cap;
rmeddis@0 464 CN_c=MacGregorMultiParams.c;
rmeddis@0 465 CN_b=MacGregorMultiParams.dGkSpike;
rmeddis@0 466 CN_Ek=MacGregorMultiParams.Ek;
rmeddis@0 467 CN_Eb= MacGregorMultiParams.Eb;
rmeddis@0 468 CN_Er=MacGregorMultiParams.Er;
rmeddis@0 469 CN_Th0= MacGregorMultiParams.Th0;
rmeddis@0 470 CN_E= zeros(nCNneurons,1);
rmeddis@0 471 CN_Gk= zeros(nCNneurons,1);
rmeddis@0 472 CN_Th= MacGregorMultiParams.Th0*ones(nCNneurons,1);
rmeddis@0 473 CN_Eb=CN_Eb.*ones(nCNneurons,1);
rmeddis@0 474 CN_Er=CN_Er.*ones(nCNneurons,1);
rmeddis@0 475 CNtimeSinceLastSpike=zeros(nCNneurons,1);
rmeddis@0 476 % tauGk is the main distinction between neurons
rmeddis@0 477 % in fact they are all the same in the standard model
rmeddis@0 478 tauGk=repmat(CNtauGk,nChannels*nCNneuronsPerChannel,1);
rmeddis@0 479
rmeddis@0 480 CN_PSTH=zeros(nChannels,reducedSegmentLength);
rmeddis@0 481 CNoutput=false(nCNneurons,reducedSignalLength);
rmeddis@0 482
rmeddis@0 483
rmeddis@0 484 %% MacGregor (IC - second nucleus) --------
rmeddis@0 485 nICcells=nChannels; % one cell per channel
rmeddis@0 486
rmeddis@0 487 ICspikeWidth=0.00015; % this may need revisiting
rmeddis@0 488 epochsPerSpike=round(ICspikeWidth/ANdt);
rmeddis@0 489 if epochsPerSpike<1
rmeddis@0 490 error(['MacGregorMulti: sample rate too low to support ' ...
rmeddis@0 491 num2str(ICspikeWidth*1e6) ' microsec spikes']);
rmeddis@0 492 end
rmeddis@0 493
rmeddis@0 494 % short names
rmeddis@0 495 IC_tauM=MacGregorParams.tauM;
rmeddis@0 496 IC_tauGk=MacGregorParams.tauGk;
rmeddis@0 497 IC_tauTh=MacGregorParams.tauTh;
rmeddis@0 498 IC_cap=MacGregorParams.Cap;
rmeddis@0 499 IC_c=MacGregorParams.c;
rmeddis@0 500 IC_b=MacGregorParams.dGkSpike;
rmeddis@0 501 IC_Th0=MacGregorParams.Th0;
rmeddis@0 502 IC_Ek=MacGregorParams.Ek;
rmeddis@0 503 IC_Eb= MacGregorParams.Eb;
rmeddis@0 504 IC_Er=MacGregorParams.Er;
rmeddis@0 505
rmeddis@0 506 IC_E=zeros(nICcells,1);
rmeddis@0 507 IC_Gk=zeros(nICcells,1);
rmeddis@0 508 IC_Th=IC_Th0*ones(nICcells,1);
rmeddis@0 509
rmeddis@0 510 % Dendritic filtering, all spikes are replaced by CNalphaFunction functions
rmeddis@0 511 ICdendriteLPfreq= MacGregorParams.dendriteLPfreq;
rmeddis@0 512 ICcurrentPerSpike=MacGregorParams.currentPerSpike;
rmeddis@0 513 ICspikeToCurrentTau=1/(2*pi*ICdendriteLPfreq);
rmeddis@0 514 t=ANdt:ANdt:3*ICspikeToCurrentTau;
rmeddis@0 515 IC_CNalphaFunction= (ICcurrentPerSpike / ...
rmeddis@0 516 ICspikeToCurrentTau)*t.*exp(-t / ICspikeToCurrentTau);
rmeddis@0 517 % figure(98), plot(t,IC_CNalphaFunction)
rmeddis@0 518
rmeddis@0 519 % working space for implementing alpha function
rmeddis@0 520 ICcurrentTemp=...
rmeddis@0 521 zeros(nICcells,reducedSegmentLength+length(IC_CNalphaFunction)-1);
rmeddis@0 522 ICtrailingAlphas=zeros(nICcells, length(IC_CNalphaFunction));
rmeddis@0 523
rmeddis@0 524 ICfiberTypeRates=zeros(nANfiberTypes,reducedSignalLength);
rmeddis@0 525 ICoutput=false(nChannels,reducedSignalLength);
rmeddis@0 526
rmeddis@0 527 ICmembranePotential=zeros(nICcells,reducedSegmentLength);
rmeddis@0 528 ICmembraneOutput=zeros(nICcells,signalLength);
rmeddis@0 529
rmeddis@0 530
rmeddis@0 531 %% Main program %% %% %% %% %% %% %% %% %% %% %% %% %% %%
rmeddis@0 532
rmeddis@0 533 % Compute the entire model for each segment
rmeddis@0 534 segmentStartPTR=1;
rmeddis@0 535 reducedSegmentPTR=1; % when sampling rate is reduced
rmeddis@0 536 while segmentStartPTR<signalLength
rmeddis@0 537 segmentEndPTR=segmentStartPTR+segmentLength-1;
rmeddis@0 538 % shorter segments after speed up.
rmeddis@0 539 shorterSegmentEndPTR=reducedSegmentPTR+reducedSegmentLength-1;
rmeddis@0 540
rmeddis@0 541 iputPressureSegment=inputSignal...
rmeddis@0 542 (:,segmentStartPTR:segmentStartPTR+segmentLength-1);
rmeddis@0 543
rmeddis@0 544 % segment debugging plots
rmeddis@0 545 % figure(98)
rmeddis@0 546 % plot(segmentTime,iputPressureSegment), title('signalSegment')
rmeddis@0 547
rmeddis@0 548
rmeddis@0 549 % OME ----------------------
rmeddis@0 550
rmeddis@0 551 % OME Stage 1: external resonances. Add to inputSignal pressure wave
rmeddis@0 552 y=iputPressureSegment;
rmeddis@0 553 for n=1:nOMEExtFilters
rmeddis@0 554 % any number of resonances can be used
rmeddis@0 555 [x OMEExtFilterBndry{n}] = ...
rmeddis@0 556 filter(ExtFilter_b{n},ExtFilter_a{n},...
rmeddis@0 557 iputPressureSegment, OMEExtFilterBndry{n});
rmeddis@0 558 x= x* OMEgainScalars(n);
rmeddis@0 559 % This is a parallel resonance so add it
rmeddis@0 560 y=y+x;
rmeddis@0 561 end
rmeddis@0 562 iputPressureSegment=y;
rmeddis@0 563 OMEextEarPressure(segmentStartPTR:segmentEndPTR)= iputPressureSegment;
rmeddis@0 564
rmeddis@0 565 % OME stage 2: convert input pressure (velocity) to
rmeddis@0 566 % tympanic membrane(TM) displacement using low pass filter
rmeddis@0 567 [TMdisplacementSegment OME_TMdisplacementBndry] = ...
rmeddis@0 568 filter(TMdisp_b,TMdisp_a,iputPressureSegment, ...
rmeddis@0 569 OME_TMdisplacementBndry);
rmeddis@0 570 % and save it
rmeddis@0 571 TMoutput(segmentStartPTR:segmentEndPTR)= TMdisplacementSegment;
rmeddis@0 572
rmeddis@0 573 % OME stage 3: middle ear high pass effect to simulate stapes inertia
rmeddis@0 574 [stapesDisplacement OMEhighPassBndry] = ...
rmeddis@0 575 filter(stapesDisp_b,stapesDisp_a,TMdisplacementSegment, ...
rmeddis@0 576 OMEhighPassBndry);
rmeddis@0 577
rmeddis@0 578 % OME stage 4: apply stapes scalar
rmeddis@0 579 stapesDisplacement=stapesDisplacement*stapesScalar;
rmeddis@0 580
rmeddis@0 581 % OME stage 5: acoustic reflex stapes attenuation
rmeddis@0 582 % Attenuate the TM response using feedback from LSR fiber activity
rmeddis@0 583 if segmentStartPTR>efferentDelayPts
rmeddis@0 584 stapesDisplacement= stapesDisplacement.*...
rmeddis@0 585 ARattenuation(segmentStartPTR-efferentDelayPts:...
rmeddis@0 586 segmentEndPTR-efferentDelayPts);
rmeddis@0 587 end
rmeddis@0 588
rmeddis@0 589 % segment debugging plots
rmeddis@0 590 % figure(98)
rmeddis@0 591 % plot(segmentTime, stapesDisplacement), title ('stapesDisplacement')
rmeddis@0 592
rmeddis@0 593 % and save
rmeddis@0 594 OMEoutput(segmentStartPTR:segmentEndPTR)= stapesDisplacement;
rmeddis@0 595
rmeddis@0 596
rmeddis@0 597 %% BM ------------------------------
rmeddis@0 598 % Each location is computed separately
rmeddis@0 599 for BFno=1:nBFs
rmeddis@0 600
rmeddis@0 601 % *linear* path
rmeddis@0 602 linOutput = stapesDisplacement * linGAIN; % linear gain
rmeddis@0 603 for order = 1 : GTlinOrder
rmeddis@0 604 [linOutput GTlinBdry{BFno,order}] = ...
rmeddis@0 605 filter(GTlin_b(BFno,:), GTlin_a(BFno,:), linOutput, GTlinBdry{BFno,order});
rmeddis@0 606 end
rmeddis@0 607
rmeddis@0 608 % *nonLinear* path
rmeddis@0 609 % efferent attenuation (0 <> 1)
rmeddis@0 610 if segmentStartPTR>efferentDelayPts
rmeddis@0 611 MOC=MOCattenuation(BFno, segmentStartPTR-efferentDelayPts:...
rmeddis@0 612 segmentEndPTR-efferentDelayPts);
rmeddis@0 613 else % no MOC available yet
rmeddis@0 614 MOC=ones(1, segmentLength);
rmeddis@0 615 end
rmeddis@0 616
rmeddis@0 617 % first gammatone filter
rmeddis@0 618 for order = 1 : GTnonlinOrder
rmeddis@0 619 [nonlinOutput GTnonlinBdry1{BFno,order}] = ...
rmeddis@0 620 filter(GTnonlin_b(BFno,:), GTnonlin_a(BFno,:), ...
rmeddis@0 621 stapesDisplacement, GTnonlinBdry1{BFno,order});
rmeddis@0 622 end
rmeddis@0 623
rmeddis@0 624 % broken stick instantaneous compression
rmeddis@0 625 % nonlinear gain is weakend by MOC before applied to BM response
rmeddis@0 626 y= nonlinOutput.*(MOC* DRNLa); % linear section.
rmeddis@0 627 % compress those parts of the signal above the compression
rmeddis@0 628 % threshold
rmeddis@0 629 abs_x = abs(nonlinOutput);
rmeddis@0 630 idx=find(abs_x>DRNLcompressionThreshold);
rmeddis@0 631 if ~isempty(idx)>0
rmeddis@0 632 y(idx)=sign(nonlinOutput(idx)).*...
rmeddis@0 633 (DRNLb*abs_x(idx).^DRNLc);
rmeddis@0 634 end
rmeddis@0 635 nonlinOutput=y;
rmeddis@0 636
rmeddis@0 637 % second filter removes distortion products
rmeddis@0 638 for order = 1 : GTnonlinOrder
rmeddis@0 639 [ nonlinOutput GTnonlinBdry2{BFno,order}] = ...
rmeddis@0 640 filter(GTnonlin_b(BFno,:), GTnonlin_a(BFno,:), nonlinOutput, GTnonlinBdry2{BFno,order});
rmeddis@0 641 end
rmeddis@0 642
rmeddis@0 643 % combine the two paths to give the DRNL displacement
rmeddis@0 644 DRNLresponse(BFno,:)=linOutput+nonlinOutput;
rmeddis@0 645 end % BF
rmeddis@0 646
rmeddis@0 647 % segment debugging plots
rmeddis@0 648 % figure(98)
rmeddis@0 649 % if size(DRNLresponse,1)>3
rmeddis@0 650 % imagesc(DRNLresponse) % matrix display
rmeddis@0 651 % title('DRNLresponse'); % single or double channel response
rmeddis@0 652 % else
rmeddis@0 653 % plot(segmentTime, DRNLresponse)
rmeddis@0 654 % end
rmeddis@0 655
rmeddis@0 656 % and save it
rmeddis@0 657 DRNLoutput(:, segmentStartPTR:segmentEndPTR)= DRNLresponse;
rmeddis@0 658
rmeddis@0 659
rmeddis@0 660 %% IHC ------------------------------------
rmeddis@0 661 % BM displacement to IHCciliaDisplacement is a high-pass filter
rmeddis@0 662 % because of viscous coupling
rmeddis@0 663 for idx=1:nBFs
rmeddis@0 664 [IHCciliaDisplacement(idx,:) IHCciliaBndry{idx}] = ...
rmeddis@0 665 filter(IHCciliaFilter_b,IHCciliaFilter_a, ...
rmeddis@0 666 DRNLresponse(idx,:), IHCciliaBndry{idx});
rmeddis@0 667 end
rmeddis@0 668
rmeddis@0 669 % apply scalar
rmeddis@0 670 IHCciliaDisplacement=IHCciliaDisplacement* IHC_C;
rmeddis@0 671
rmeddis@0 672 % and save it
rmeddis@0 673 IHC_cilia_output(:,segmentStartPTR:segmentStartPTR+segmentLength-1)=...
rmeddis@0 674 IHCciliaDisplacement;
rmeddis@0 675
rmeddis@0 676 % compute apical conductance
rmeddis@9 677 G=IHCGmax./(1+exp(-(IHCciliaDisplacement-IHCu0)/IHCs0).*...
rmeddis@0 678 (1+exp(-(IHCciliaDisplacement-IHCu1)/IHCs1)));
rmeddis@9 679 Gu=G + IHCGa;
rmeddis@0 680
rmeddis@0 681 % Compute receptor potential
rmeddis@0 682 for idx=1:segmentLength
rmeddis@0 683 IHC_Vnow=IHC_Vnow+ (-Gu(:, idx).*(IHC_Vnow-IHC_Et)-...
rmeddis@0 684 IHC_Gk*(IHC_Vnow-IHC_Ekp))* dt/IHC_Cab;
rmeddis@0 685 IHC_RP(:,idx)=IHC_Vnow;
rmeddis@0 686 end
rmeddis@0 687
rmeddis@0 688 % segment debugging plots
rmeddis@0 689 % if size(IHC_RP,1)>3
rmeddis@0 690 % surf(IHC_RP), shading interp, title('IHC_RP')
rmeddis@0 691 % else
rmeddis@0 692 % plot(segmentTime, IHC_RP)
rmeddis@0 693 % end
rmeddis@0 694
rmeddis@0 695 % and save it
rmeddis@0 696 IHCoutput(:, segmentStartPTR:segmentStartPTR+segmentLength-1)=IHC_RP;
rmeddis@0 697
rmeddis@0 698
rmeddis@0 699 %% synapse -----------------------------
rmeddis@0 700 % Compute the vesicle release rate for each fiber type at each BF
rmeddis@0 701 % replicate IHC_RP for each fiber type
rmeddis@0 702 Vsynapse=repmat(IHC_RP, nANfiberTypes,1);
rmeddis@0 703
rmeddis@0 704 % look-up table of target fraction channels open for a given IHC_RP
rmeddis@0 705 mICaINF= 1./( 1 + exp(-gamma * Vsynapse) /beta);
rmeddis@0 706 % fraction of channel open - apply time constant
rmeddis@0 707 for idx=1:segmentLength
rmeddis@0 708 % mICaINF is the current 'target' value of mICa
rmeddis@0 709 mICaCurrent=mICaCurrent+(mICaINF(:,idx)-mICaCurrent)*dt./tauM;
rmeddis@0 710 mICa(:,idx)=mICaCurrent;
rmeddis@0 711 end
rmeddis@0 712
rmeddis@0 713 ICa= (GmaxCa* mICa.^3) .* (Vsynapse- ECa);
rmeddis@0 714
rmeddis@0 715 for idx=1:segmentLength
rmeddis@0 716 CaCurrent=CaCurrent + ICa(:,idx)*dt - CaCurrent*dt./tauCa;
rmeddis@0 717 synapticCa(:,idx)=CaCurrent;
rmeddis@0 718 end
rmeddis@0 719 synapticCa=-synapticCa; % treat IHCpreSynapseParams as positive substance
rmeddis@0 720
rmeddis@0 721 % NB vesicleReleaseRate is /s and is independent of dt
rmeddis@0 722 vesicleReleaseRate = synapse_z * synapticCa.^synapse_power; % rate
rmeddis@0 723
rmeddis@0 724 % segment debugging plots
rmeddis@0 725 % if size(vesicleReleaseRate,1)>3
rmeddis@0 726 % surf(vesicleReleaseRate), shading interp, title('vesicleReleaseRate')
rmeddis@0 727 % else
rmeddis@0 728 % plot(segmentTime, vesicleReleaseRate)
rmeddis@0 729 % end
rmeddis@0 730
rmeddis@0 731
rmeddis@0 732 %% AN
rmeddis@0 733 switch AN_spikesOrProbability
rmeddis@0 734 case 'probability'
rmeddis@0 735 % No refractory effect is applied
rmeddis@0 736 for t = 1:segmentLength;
rmeddis@0 737 M_Pq=PAN_M-Pavailable;
rmeddis@0 738 M_Pq(M_Pq<0)=0;
rmeddis@0 739 Preplenish = M_Pq .* PAN_ydt;
rmeddis@0 740 Pejected = Pavailable.* vesicleReleaseRate(:,t)*dt;
rmeddis@0 741 Preprocessed = M_Pq.*Preprocess.* PAN_xdt;
rmeddis@0 742
rmeddis@0 743 ANprobability(:,t)= min(Pejected,1);
rmeddis@0 744 reuptakeandlost= PAN_rdt_plus_ldt .* Pcleft;
rmeddis@0 745 reuptake= PAN_rdt.* Pcleft;
rmeddis@0 746
rmeddis@0 747 Pavailable= Pavailable+ Preplenish- Pejected+ Preprocessed;
rmeddis@0 748 Pcleft= Pcleft + Pejected - reuptakeandlost;
rmeddis@0 749 Preprocess= Preprocess + reuptake - Preprocessed;
rmeddis@0 750 Pavailable(Pavailable<0)=0;
rmeddis@0 751 savePavailableSeg(:,t)=Pavailable; % synapse tracking
rmeddis@0 752 end
rmeddis@0 753 % and save it as *rate*
rmeddis@0 754 ANrate=ANprobability/dt;
rmeddis@0 755 ANprobRateOutput(:, segmentStartPTR:...
rmeddis@0 756 segmentStartPTR+segmentLength-1)= ANrate;
rmeddis@0 757 % monitor synapse contents (only sometimes used)
rmeddis@0 758 savePavailable(:, segmentStartPTR:segmentStartPTR+segmentLength-1)=...
rmeddis@0 759 savePavailableSeg;
rmeddis@0 760
rmeddis@0 761 % Estimate efferent effects. ARattenuation (0 <> 1)
rmeddis@0 762 % acoustic reflex
rmeddis@0 763 ARAttSeg=mean(ANrate(1:nBFs,:),1); %LSR channels are 1:nBF
rmeddis@0 764 % smooth
rmeddis@0 765 [ARAttSeg, ARboundaryProb] = ...
rmeddis@0 766 filter(ARfilt_b, ARfilt_a, ARAttSeg, ARboundaryProb);
rmeddis@0 767 ARAttSeg=ARAttSeg-ARrateThreshold;
rmeddis@0 768 ARAttSeg(ARAttSeg<0)=0; % prevent negative strengths
rmeddis@0 769 ARattenuation(segmentStartPTR:segmentEndPTR)=...
rmeddis@0 770 (1-ARrateToAttenuationFactorProb.* ARAttSeg);
rmeddis@0 771
rmeddis@0 772 % MOC attenuation
rmeddis@0 773 % within-channel HSR response only
rmeddis@0 774 HSRbegins=nBFs*(nANfiberTypes-1)+1;
rmeddis@0 775 rates=ANrate(HSRbegins:end,:);
rmeddis@0 776 for idx=1:nBFs
rmeddis@0 777 [smoothedRates, MOCprobBoundary{idx}] = ...
rmeddis@0 778 filter(MOCfilt_b, MOCfilt_a, rates(idx,:), ...
rmeddis@0 779 MOCprobBoundary{idx});
rmeddis@0 780 smoothedRates=smoothedRates-MOCrateThreshold;
rmeddis@0 781 smoothedRates(smoothedRates<0)=0;
rmeddis@0 782 MOCattenuation(idx,segmentStartPTR:segmentEndPTR)= ...
rmeddis@0 783 (1- smoothedRates* rateToAttenuationFactorProb);
rmeddis@0 784 end
rmeddis@0 785 MOCattenuation(MOCattenuation<0)=0.001;
rmeddis@0 786
rmeddis@0 787
rmeddis@0 788 case 'spikes'
rmeddis@0 789 ANtimeCount=0;
rmeddis@0 790 % implement speed upt
rmeddis@0 791 for t = ANspeedUpFactor:ANspeedUpFactor:segmentLength;
rmeddis@0 792 ANtimeCount=ANtimeCount+1;
rmeddis@0 793 % convert release rate to probabilities
rmeddis@0 794 releaseProb=vesicleReleaseRate(:,t)*ANdt;
rmeddis@0 795 % releaseProb is the release probability per channel
rmeddis@0 796 % but each channel has many synapses
rmeddis@0 797 releaseProb=repmat(releaseProb',nFibersPerChannel,1);
rmeddis@0 798 releaseProb=reshape(releaseProb, nFibersPerChannel*nChannels,1);
rmeddis@0 799
rmeddis@0 800 % AN_available=round(AN_available); % vesicles must be integer, (?needed)
rmeddis@0 801 M_q=AN_M- AN_available; % number of missing vesicles
rmeddis@0 802 M_q(M_q<0)= 0; % cannot be less than 0
rmeddis@0 803
rmeddis@0 804 % AN_N1 converts probability to discrete events
rmeddis@0 805 % it considers each event that might occur
rmeddis@0 806 % (how many vesicles might be released)
rmeddis@0 807 % and returns a count of how many were released
rmeddis@0 808
rmeddis@0 809 % slow line
rmeddis@0 810 % probabilities= 1-(1-releaseProb).^AN_available;
rmeddis@0 811 probabilities= 1-intpow((1-releaseProb), AN_available);
rmeddis@0 812 ejected= probabilities> rand(length(AN_available),1);
rmeddis@0 813
rmeddis@0 814 reuptakeandlost = AN_rdt_plus_ldt .* AN_cleft;
rmeddis@0 815 reuptake = AN_rdt.* AN_cleft;
rmeddis@0 816
rmeddis@0 817 % slow line
rmeddis@0 818 % probabilities= 1-(1-AN_reprocess.*AN_xdt).^M_q;
rmeddis@0 819 probabilities= 1-intpow((1-AN_reprocess.*AN_xdt), M_q);
rmeddis@0 820 reprocessed= probabilities>rand(length(M_q),1);
rmeddis@0 821
rmeddis@0 822 % slow line
rmeddis@0 823 % probabilities= 1-(1-AN_ydt).^M_q;
rmeddis@0 824 probabilities= 1-intpow((1-AN_ydt), M_q);
rmeddis@0 825
rmeddis@0 826 replenish= probabilities>rand(length(M_q),1);
rmeddis@0 827
rmeddis@0 828 AN_available = AN_available + replenish - ejected ...
rmeddis@0 829 + reprocessed;
rmeddis@0 830 AN_cleft = AN_cleft + ejected - reuptakeandlost;
rmeddis@0 831 AN_reprocess = AN_reprocess + reuptake - reprocessed;
rmeddis@0 832
rmeddis@0 833 % ANspikes is logical record of vesicle release events>0
rmeddis@0 834 ANspikes(:, ANtimeCount)= ejected;
rmeddis@0 835 end % t
rmeddis@0 836
rmeddis@0 837 % zero any events that are preceded by release events ...
rmeddis@0 838 % within the refractory period
rmeddis@0 839 % The refractory period consist of two periods
rmeddis@0 840 % 1) the absolute period where no spikes occur
rmeddis@0 841 % 2) a relative period where a spike may occur. This relative
rmeddis@0 842 % period is realised as a variable length interval
rmeddis@0 843 % where the length is chosen at random
rmeddis@0 844 % (esentially a linear ramp up)
rmeddis@0 845
rmeddis@0 846 % Andreas has a fix for this
rmeddis@0 847 for t = 1:ANtimeCount-2*lengthAbsRefractory;
rmeddis@0 848 % identify all spikes across fiber array at time (t)
rmeddis@0 849 % idx is a list of channels where spikes occurred
rmeddis@0 850 % ?? try sparse matrices?
rmeddis@0 851 idx=find(ANspikes(:,t));
rmeddis@0 852 for j=idx % consider each spike
rmeddis@0 853 % specify variable refractory period
rmeddis@0 854 % between abs and 2*abs refractory period
rmeddis@0 855 nPointsRefractory=lengthAbsRefractory+...
rmeddis@0 856 round(rand*lengthAbsRefractory);
rmeddis@0 857 % disable spike potential for refractory period
rmeddis@0 858 % set all values in this range to 0
rmeddis@0 859 ANspikes(j,t+1:t+nPointsRefractory)=0;
rmeddis@0 860 end
rmeddis@0 861 end %t
rmeddis@0 862
rmeddis@0 863 % segment debugging
rmeddis@0 864 % plotInstructions.figureNo=98;
rmeddis@0 865 % plotInstructions.displaydt=ANdt;
rmeddis@0 866 % plotInstructions.numPlots=1;
rmeddis@0 867 % plotInstructions.subPlotNo=1;
rmeddis@0 868 % UTIL_plotMatrix(ANspikes, plotInstructions);
rmeddis@0 869
rmeddis@0 870 % and save it. NB, AN is now on 'speedUp' time
rmeddis@0 871 ANoutput(:, reducedSegmentPTR: shorterSegmentEndPTR)=ANspikes;
rmeddis@0 872
rmeddis@0 873
rmeddis@0 874 %% CN Macgregor first neucleus -------------------------------
rmeddis@0 875 % input is from AN so ANdt is used throughout
rmeddis@0 876 % Each CNneuron has a unique set of input fibers selected
rmeddis@0 877 % at random from the available AN fibers (CNinputfiberLists)
rmeddis@0 878
rmeddis@0 879 % Create the dendritic current for that neuron
rmeddis@0 880 % First get input spikes to this neuron
rmeddis@0 881 synapseNo=1;
rmeddis@0 882 for ch=1:nChannels
rmeddis@0 883 for idx=1:nCNneuronsPerChannel
rmeddis@0 884 % determine candidate fibers for this unit
rmeddis@0 885 fibersUsed=CNinputfiberLists(synapseNo,:);
rmeddis@0 886 % ANpsth has a bin width of dt
rmeddis@0 887 % (just a simple sum across fibers)
rmeddis@0 888 AN_PSTH(synapseNo,:) = ...
rmeddis@0 889 sum(ANspikes(fibersUsed,:), 1);
rmeddis@0 890 synapseNo=synapseNo+1;
rmeddis@0 891 end
rmeddis@0 892 end
rmeddis@0 893
rmeddis@0 894 % One alpha function per spike
rmeddis@0 895 [alphaRows alphaCols]=size(CNtrailingAlphas);
rmeddis@0 896
rmeddis@0 897 for unitNo=1:nCNneurons
rmeddis@0 898 CNcurrentTemp(unitNo,:)= ...
rmeddis@0 899 conv(AN_PSTH(unitNo,:),CNalphaFunction);
rmeddis@0 900 end
rmeddis@0 901 % add post-synaptic current left over from previous segment
rmeddis@0 902 CNcurrentTemp(:,1:alphaCols)=...
rmeddis@0 903 CNcurrentTemp(:,1:alphaCols)+ CNtrailingAlphas;
rmeddis@0 904
rmeddis@0 905 % take post-synaptic current for this segment
rmeddis@0 906 CNcurrentInput= CNcurrentTemp(:, 1:reducedSegmentLength);
rmeddis@0 907
rmeddis@0 908 % trailingalphas are the ends of the alpha functions that
rmeddis@0 909 % spill over into the next segment
rmeddis@0 910 CNtrailingAlphas= ...
rmeddis@0 911 CNcurrentTemp(:, reducedSegmentLength+1:end);
rmeddis@0 912
rmeddis@0 913 if CN_c>0
rmeddis@0 914 % variable threshold condition (slow)
rmeddis@0 915 for t=1:reducedSegmentLength
rmeddis@0 916 CNtimeSinceLastSpike=CNtimeSinceLastSpike-dts;
rmeddis@0 917 s=CN_E>CN_Th & CNtimeSinceLastSpike<0 ;
rmeddis@0 918 CNtimeSinceLastSpike(s)=0.0005; % 0.5 ms for sodium spike
rmeddis@0 919 dE =(-CN_E/CN_tauM + ...
rmeddis@0 920 CNcurrentInput(:,t)/CN_cap+(CN_Gk/CN_cap).*(CN_Ek-CN_E))*dt;
rmeddis@0 921 dGk=-CN_Gk*dt./tauGk + CN_b*s;
rmeddis@0 922 dTh=-(CN_Th-CN_Th0)*dt/CN_tauTh + CN_c*s;
rmeddis@0 923 CN_E=CN_E+dE;
rmeddis@0 924 CN_Gk=CN_Gk+dGk;
rmeddis@0 925 CN_Th=CN_Th+dTh;
rmeddis@0 926 CNmembranePotential(:,t)=CN_E+s.*(CN_Eb-CN_E)+CN_Er;
rmeddis@0 927 end
rmeddis@0 928 else
rmeddis@0 929 % static threshold (faster)
rmeddis@0 930 for t=1:reducedSegmentLength
rmeddis@0 931 CNtimeSinceLastSpike=CNtimeSinceLastSpike-dt;
rmeddis@0 932 s=CN_E>CN_Th0 & CNtimeSinceLastSpike<0 ; % =1 if both conditions met
rmeddis@0 933 CNtimeSinceLastSpike(s)=0.0005; % 0.5 ms for sodium spike
rmeddis@0 934 dE = (-CN_E/CN_tauM + ...
rmeddis@0 935 CNcurrentInput(:,t)/CN_cap+(CN_Gk/CN_cap).*(CN_Ek-CN_E))*dt;
rmeddis@0 936 dGk=-CN_Gk*dt./tauGk +CN_b*s;
rmeddis@0 937 CN_E=CN_E+dE;
rmeddis@0 938 CN_Gk=CN_Gk+dGk;
rmeddis@0 939 % add spike to CN_E and add resting potential (-60 mV)
rmeddis@0 940 CNmembranePotential(:,t)=CN_E+s.*(CN_Eb-CN_E)+CN_Er;
rmeddis@0 941 end
rmeddis@0 942 end
rmeddis@0 943
rmeddis@0 944 % extract spikes. A spike is a substantial upswing in voltage
rmeddis@0 945 CN_spikes=CNmembranePotential> -0.01;
rmeddis@0 946
rmeddis@0 947 % now remove any spike that is immediately followed by a spike
rmeddis@0 948 % NB 'find' works on columns (whence the transposing)
rmeddis@0 949 CN_spikes=CN_spikes';
rmeddis@0 950 idx=find(CN_spikes);
rmeddis@0 951 idx=idx(1:end-1);
rmeddis@0 952 CN_spikes(idx+1)=0;
rmeddis@0 953 CN_spikes=CN_spikes';
rmeddis@0 954
rmeddis@0 955 % segment debugging
rmeddis@0 956 % plotInstructions.figureNo=98;
rmeddis@0 957 % plotInstructions.displaydt=ANdt;
rmeddis@0 958 % plotInstructions.numPlots=1;
rmeddis@0 959 % plotInstructions.subPlotNo=1;
rmeddis@0 960 % UTIL_plotMatrix(CN_spikes, plotInstructions);
rmeddis@0 961
rmeddis@0 962 % and save it
rmeddis@0 963 CNoutput(:, reducedSegmentPTR:shorterSegmentEndPTR)=...
rmeddis@0 964 CN_spikes;
rmeddis@0 965
rmeddis@0 966
rmeddis@0 967 %% IC ----------------------------------------------
rmeddis@0 968 % MacGregor or some other second order neurons
rmeddis@0 969
rmeddis@0 970 % combine CN neurons in same channel, i.e. same BF & same tauCa
rmeddis@0 971 % to generate inputs to single IC unit
rmeddis@0 972 channelNo=0;
rmeddis@0 973 for idx=1:nCNneuronsPerChannel:nCNneurons-nCNneuronsPerChannel+1;
rmeddis@0 974 channelNo=channelNo+1;
rmeddis@0 975 CN_PSTH(channelNo,:)=...
rmeddis@0 976 sum(CN_spikes(idx:idx+nCNneuronsPerChannel-1,:));
rmeddis@0 977 end
rmeddis@0 978
rmeddis@0 979 [alphaRows alphaCols]=size(ICtrailingAlphas);
rmeddis@0 980 for ICneuronNo=1:nICcells
rmeddis@0 981 ICcurrentTemp(ICneuronNo,:)= ...
rmeddis@0 982 conv(CN_PSTH(ICneuronNo,:), IC_CNalphaFunction);
rmeddis@0 983 end
rmeddis@0 984
rmeddis@0 985 % add the unused current from the previous convolution
rmeddis@0 986 ICcurrentTemp(:,1:alphaCols)=ICcurrentTemp(:,1:alphaCols)...
rmeddis@0 987 + ICtrailingAlphas;
rmeddis@0 988 % take what is required and keep the trailing part for next time
rmeddis@0 989 inputCurrent=ICcurrentTemp(:, 1:reducedSegmentLength);
rmeddis@0 990 ICtrailingAlphas=ICcurrentTemp(:, reducedSegmentLength+1:end);
rmeddis@0 991
rmeddis@0 992 if IC_c==0
rmeddis@0 993 % faster computation when threshold is stable (C==0)
rmeddis@0 994 for t=1:reducedSegmentLength
rmeddis@0 995 s=IC_E>IC_Th0;
rmeddis@0 996 dE = (-IC_E/IC_tauM + inputCurrent(:,t)/IC_cap +...
rmeddis@0 997 (IC_Gk/IC_cap).*(IC_Ek-IC_E))*dt;
rmeddis@0 998 dGk=-IC_Gk*dt/IC_tauGk +IC_b*s;
rmeddis@0 999 IC_E=IC_E+dE;
rmeddis@0 1000 IC_Gk=IC_Gk+dGk;
rmeddis@0 1001 ICmembranePotential(:,t)=IC_E+s.*(IC_Eb-IC_E)+IC_Er;
rmeddis@0 1002 end
rmeddis@0 1003 else
rmeddis@0 1004 % threshold is changing (IC_c>0; e.g. bushy cell)
rmeddis@0 1005 for t=1:reducedSegmentLength
rmeddis@0 1006 dE = (-IC_E/IC_tauM + ...
rmeddis@0 1007 inputCurrent(:,t)/IC_cap + (IC_Gk/IC_cap)...
rmeddis@0 1008 .*(IC_Ek-IC_E))*dt;
rmeddis@0 1009 IC_E=IC_E+dE;
rmeddis@0 1010 s=IC_E>IC_Th;
rmeddis@0 1011 ICmembranePotential(:,t)=IC_E+s.*(IC_Eb-IC_E)+IC_Er;
rmeddis@0 1012 dGk=-IC_Gk*dt/IC_tauGk +IC_b*s;
rmeddis@0 1013 IC_Gk=IC_Gk+dGk;
rmeddis@0 1014
rmeddis@0 1015 % After a spike, the threshold is raised
rmeddis@0 1016 % otherwise it settles to its baseline
rmeddis@0 1017 dTh=-(IC_Th-Th0)*dt/IC_tauTh +s*IC_c;
rmeddis@0 1018 IC_Th=IC_Th+dTh;
rmeddis@0 1019 end
rmeddis@0 1020 end
rmeddis@0 1021
rmeddis@0 1022 ICspikes=ICmembranePotential> -0.01;
rmeddis@0 1023 % now remove any spike that is immediately followed by a spike
rmeddis@0 1024 % NB 'find' works on columns (whence the transposing)
rmeddis@0 1025 ICspikes=ICspikes';
rmeddis@0 1026 idx=find(ICspikes);
rmeddis@0 1027 idx=idx(1:end-1);
rmeddis@0 1028 ICspikes(idx+1)=0;
rmeddis@0 1029 ICspikes=ICspikes';
rmeddis@0 1030
rmeddis@0 1031 nCellsPerTau= nICcells/nANfiberTypes;
rmeddis@0 1032 firstCell=1;
rmeddis@0 1033 lastCell=nCellsPerTau;
rmeddis@0 1034 for tauCount=1:nANfiberTypes
rmeddis@0 1035 % separate rates according to fiber types
rmeddis@0 1036 ICfiberTypeRates(tauCount, ...
rmeddis@0 1037 reducedSegmentPTR:shorterSegmentEndPTR)=...
rmeddis@0 1038 sum(ICspikes(firstCell:lastCell, :))...
rmeddis@0 1039 /(nCellsPerTau*ANdt);
rmeddis@0 1040 firstCell=firstCell+nCellsPerTau;
rmeddis@0 1041 lastCell=lastCell+nCellsPerTau;
rmeddis@0 1042 end
rmeddis@0 1043 ICoutput(:, reducedSegmentPTR:shorterSegmentEndPTR)=ICspikes;
rmeddis@0 1044
rmeddis@0 1045 if nBFs==1 % single channel
rmeddis@0 1046 x= repmat(ICmembranePotential(1,:), ANspeedUpFactor,1);
rmeddis@0 1047 x= reshape(x,1,segmentLength);
rmeddis@0 1048 if nANfiberTypes>1 % save HSR and LSR
rmeddis@0 1049 y= repmat(ICmembranePotential(end,:), ANspeedUpFactor,1);
rmeddis@0 1050 y= reshape(y,1,segmentLength);
rmeddis@0 1051 x=[x; y];
rmeddis@0 1052 end
rmeddis@0 1053 ICmembraneOutput(:, segmentStartPTR:segmentEndPTR)= x;
rmeddis@0 1054 end
rmeddis@0 1055
rmeddis@0 1056 % estimate efferent effects.
rmeddis@0 1057 % ARis based on LSR units. LSR channels are 1:nBF
rmeddis@0 1058 if nANfiberTypes>1 % AR is multi-channel only
rmeddis@0 1059 ARAttSeg=sum(ICspikes(1:nBFs,:),1)/ANdt;
rmeddis@0 1060 [ARAttSeg, ARboundary] = ...
rmeddis@0 1061 filter(ARfilt_b, ARfilt_a, ARAttSeg, ARboundary);
rmeddis@0 1062 ARAttSeg=ARAttSeg-ARrateThreshold;
rmeddis@0 1063 ARAttSeg(ARAttSeg<0)=0; % prevent negative strengths
rmeddis@0 1064 % scale up to dt from ANdt
rmeddis@0 1065 x= repmat(ARAttSeg, ANspeedUpFactor,1);
rmeddis@0 1066 x=reshape(x,1,segmentLength);
rmeddis@0 1067 ARattenuation(segmentStartPTR:segmentEndPTR)=...
rmeddis@0 1068 (1-ARrateToAttenuationFactor* x);
rmeddis@0 1069 ARattenuation(ARattenuation<0)=0.001;
rmeddis@0 1070 else
rmeddis@0 1071 % single channel model; disable AR
rmeddis@0 1072 ARattenuation(segmentStartPTR:segmentEndPTR)=...
rmeddis@0 1073 ones(1,segmentLength);
rmeddis@0 1074 end
rmeddis@0 1075
rmeddis@0 1076 % MOC attenuation using HSR response only
rmeddis@0 1077 % Separate MOC effect for each BF
rmeddis@0 1078 HSRbegins=nBFs*(nANfiberTypes-1)+1;
rmeddis@0 1079 rates=ICspikes(HSRbegins:end,:)/ANdt;
rmeddis@0 1080 for idx=1:nBFs
rmeddis@0 1081 [smoothedRates, MOCboundary{idx}] = ...
rmeddis@0 1082 filter(MOCfilt_b, MOCfilt_a, rates(idx,:), ...
rmeddis@0 1083 MOCboundary{idx});
rmeddis@0 1084 MOCattSegment(idx,:)=smoothedRates;
rmeddis@0 1085 % expand timescale back to model dt from ANdt
rmeddis@0 1086 x= repmat(MOCattSegment(idx,:), ANspeedUpFactor,1);
rmeddis@0 1087 x= reshape(x,1,segmentLength);
rmeddis@0 1088 MOCattenuation(idx,segmentStartPTR:segmentEndPTR)= ...
rmeddis@0 1089 (1- MOCrateToAttenuationFactor* x);
rmeddis@0 1090 end
rmeddis@0 1091 MOCattenuation(MOCattenuation<0)=0.04;
rmeddis@0 1092 % segment debugging
rmeddis@0 1093 % plotInstructions.figureNo=98;
rmeddis@0 1094 % plotInstructions.displaydt=ANdt;
rmeddis@0 1095 % plotInstructions.numPlots=1;
rmeddis@0 1096 % plotInstructions.subPlotNo=1;
rmeddis@0 1097 % UTIL_plotMatrix(ICspikes, plotInstructions);
rmeddis@0 1098
rmeddis@0 1099 end % AN_spikesOrProbability
rmeddis@0 1100 segmentStartPTR=segmentStartPTR+segmentLength;
rmeddis@0 1101 reducedSegmentPTR=reducedSegmentPTR+reducedSegmentLength;
rmeddis@0 1102
rmeddis@0 1103
rmeddis@0 1104 end % segment
rmeddis@0 1105
rmeddis@9 1106 path(restorePath)