annotate examples/simpletest/simpletest.cpp @ 235:0a83469c6232

Replace simpletest.c with simpletest.cpp
author Jamie Bullock <jamie@jamiebullock.com>
date Thu, 05 Jun 2014 20:24:06 +0100
parents
children 8c768f32a6a8
rev   line source
jamie@235 1 /*
jamie@235 2 * Copyright (C) 2012 Jamie Bullock
jamie@235 3 *
jamie@235 4 * Permission is hereby granted, free of charge, to any person obtaining a copy
jamie@235 5 * of this software and associated documentation files (the "Software"), to
jamie@235 6 * deal in the Software without restriction, including without limitation the
jamie@235 7 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
jamie@235 8 * sell copies of the Software, and to permit persons to whom the Software is
jamie@235 9 * furnished to do so, subject to the following conditions:
jamie@235 10 *
jamie@235 11 * The above copyright notice and this permission notice shall be included in
jamie@235 12 * all copies or substantial portions of the Software.
jamie@235 13 *
jamie@235 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
jamie@235 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
jamie@235 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
jamie@235 17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
jamie@235 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
jamie@235 19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
jamie@235 20 * IN THE SOFTWARE.
jamie@235 21 *
jamie@235 22 */
jamie@235 23
jamie@235 24 #include <iostream>
jamie@235 25
jamie@235 26 #include <stdio.h>
jamie@235 27 #include <stdlib.h>
jamie@235 28 #include <math.h>
jamie@235 29 #include <stdbool.h>
jamie@235 30
jamie@235 31 #include "xtract/libxtract.h"
jamie@235 32 #include "xtract/xtract_stateful.h"
jamie@235 33 #include "xtract/xtract_scalar.h"
jamie@235 34 #include "WaveFile.h"
jamie@235 35
jamie@235 36 #ifndef M_PI
jamie@235 37 #define M_PI 3.14159265358979323846264338327
jamie@235 38 #endif
jamie@235 39
jamie@235 40 using namespace std;
jamie@235 41
jamie@235 42 typedef enum waveform_type_
jamie@235 43 {
jamie@235 44 SINE,
jamie@235 45 SAWTOOTH,
jamie@235 46 SQUARE,
jamie@235 47 NOISE
jamie@235 48 }
jamie@235 49 waveform_type;
jamie@235 50
jamie@235 51 #define BLOCKSIZE 512
jamie@235 52 #define MAVG_COUNT 10
jamie@235 53 #define HALF_BLOCKSIZE BLOCKSIZE >> 1
jamie@235 54 #define SAMPLERATE 44100
jamie@235 55 #define PERIOD 102
jamie@235 56 #define MFCC_FREQ_BANDS 13
jamie@235 57 #define MFCC_FREQ_MIN 20
jamie@235 58 #define MFCC_FREQ_MAX 20000
jamie@235 59
jamie@235 60
jamie@235 61 double wavetable[BLOCKSIZE];
jamie@235 62
jamie@235 63 void fill_wavetable(const float frequency, waveform_type type)
jamie@235 64 {
jamie@235 65
jamie@235 66 int samples_per_period = SAMPLERATE / frequency;
jamie@235 67
jamie@235 68 for (int i = 0; i < BLOCKSIZE; ++i)
jamie@235 69 {
jamie@235 70 int phase = i % samples_per_period;
jamie@235 71
jamie@235 72 switch (type)
jamie@235 73 {
jamie@235 74 case SINE:
jamie@235 75 wavetable[i] = sin((phase / (double)PERIOD) * 2 * M_PI);
jamie@235 76 break;
jamie@235 77 case SQUARE:
jamie@235 78 if (phase < (samples_per_period / 2.f))
jamie@235 79 {
jamie@235 80 wavetable[i] = -1.0;
jamie@235 81 }
jamie@235 82 else
jamie@235 83 {
jamie@235 84 wavetable[i] = 1.0;
jamie@235 85 }
jamie@235 86 break;
jamie@235 87 case SAWTOOTH:
jamie@235 88 wavetable[i] = ((phase / (double)PERIOD) * 2) - 1.;
jamie@235 89 break;
jamie@235 90 case NOISE:
jamie@235 91 wavetable[i] = ((random() % 1000) / 500.0) - 1;
jamie@235 92 break;
jamie@235 93 }
jamie@235 94 }
jamie@235 95 }
jamie@235 96
jamie@235 97 void print_wavetable(void)
jamie@235 98 {
jamie@235 99 for (int i = 0; i < BLOCKSIZE; ++i)
jamie@235 100 {
jamie@235 101 printf("%f\n", wavetable[i]);
jamie@235 102 }
jamie@235 103 }
jamie@235 104
jamie@235 105 int main(void)
jamie@235 106 {
jamie@235 107 double mean = 0.0;
jamie@235 108 double f0 = 0.0;
jamie@235 109 double midicents = 0.0;
jamie@235 110 double flux = 0.0;
jamie@235 111 double centroid = 0.0;
jamie@235 112 double lowest = 0.0;
jamie@235 113 double spectrum[BLOCKSIZE] = {0};
jamie@235 114 double windowed[BLOCKSIZE] = {0};
jamie@235 115 double peaks[BLOCKSIZE] = {0};
jamie@235 116 double harmonics[BLOCKSIZE] = {0};
jamie@235 117 double subframes_windowed[BLOCKSIZE] = {0};
jamie@235 118 double subframes_spectrum[BLOCKSIZE] = {0};
jamie@235 119 double difference[HALF_BLOCKSIZE] = {0};
jamie@235 120 double lastn[MAVG_COUNT] = {0};
jamie@235 121 double *window = NULL;
jamie@235 122 double *window_subframe = NULL;
jamie@235 123 double mfccs[MFCC_FREQ_BANDS] = {0};
jamie@235 124 double argd[4] = {0};
jamie@235 125 double samplerate = 44100.0;
jamie@235 126 double prev_note = 0.0;
jamie@235 127 int n;
jamie@235 128 int rv = XTRACT_SUCCESS;
jamie@235 129 double last_found_peak_time = 0.0;
jamie@235 130 WaveFile wavFile("test.wav");
jamie@235 131 xtract_mel_filter mel_filters;
jamie@235 132 xtract_last_n_state *last_n_state = xtract_last_n_state_new(MAVG_COUNT);
jamie@235 133
jamie@235 134 if (!wavFile.IsLoaded())
jamie@235 135 {
jamie@235 136 return EXIT_FAILURE;
jamie@235 137 }
jamie@235 138
jamie@235 139 float *wavData = (float *)wavFile.GetData(); // assume 32-bit float
jamie@235 140 std::size_t wavBytes = wavFile.GetDataSize();
jamie@235 141 uint64_t wavSamples = wavBytes / sizeof(float);
jamie@235 142 double data[wavSamples];
jamie@235 143
jamie@235 144 for (n = 0; n < wavSamples; ++n)
jamie@235 145 {
jamie@235 146 data[n] = (double)wavData[n];
jamie@235 147 }
jamie@235 148 // Convert to double
jamie@235 149
jamie@235 150
jamie@235 151 /* Allocate Mel filters */
jamie@235 152 mel_filters.n_filters = MFCC_FREQ_BANDS;
jamie@235 153 mel_filters.filters = (double **)malloc(MFCC_FREQ_BANDS * sizeof(double *));
jamie@235 154 for(uint8_t k = 0; k < MFCC_FREQ_BANDS; ++k)
jamie@235 155 {
jamie@235 156 mel_filters.filters[k] = (double *)malloc(BLOCKSIZE * sizeof(double));
jamie@235 157 }
jamie@235 158
jamie@235 159 xtract_init_mfcc(BLOCKSIZE >> 1, SAMPLERATE >> 1, XTRACT_EQUAL_GAIN, MFCC_FREQ_MIN, MFCC_FREQ_MAX, mel_filters.n_filters, mel_filters.filters);
jamie@235 160
jamie@235 161 /* create the window functions */
jamie@235 162 window = xtract_init_window(BLOCKSIZE, XTRACT_HANN);
jamie@235 163 window_subframe = xtract_init_window(HALF_BLOCKSIZE, XTRACT_HANN);
jamie@235 164 xtract_init_wavelet_f0_state();
jamie@235 165
jamie@235 166 // fill_wavetable(344.53125f, NOISE); // 344.53125f = 128 samples @ 44100 Hz
jamie@235 167 // fill_wavetable(344.53125f, SINE); // 344.53125f = 128 samples @ 44100 Hz
jamie@235 168
jamie@235 169 /*
jamie@235 170 print_wavetable();
jamie@235 171 */
jamie@235 172 std::cout << "File has " << wavSamples << " samples" << std::endl;
jamie@235 173 int peak_found = XTRACT_NO_RESULT;
jamie@235 174
jamie@235 175 for (uint64_t n = 0; (n + BLOCKSIZE) < wavSamples; n += HALF_BLOCKSIZE) // Overlap by HALF_BLOCKSIZE
jamie@235 176 {
jamie@235 177 /* get the F0 */
jamie@235 178 xtract[XTRACT_WAVELET_F0](&data[n], BLOCKSIZE, &samplerate, &f0);
jamie@235 179
jamie@235 180 /* get the F0 as a MIDI note */
jamie@235 181 if (f0 != 0.0)
jamie@235 182 {
jamie@235 183 xtract[XTRACT_MIDICENT](NULL, 0, &f0, &midicents);
jamie@235 184 int note = (int)round(midicents / 100);
jamie@235 185 if (note != prev_note)
jamie@235 186 {
jamie@235 187 printf("Pitch: %d at %f\n", note, n / (float)SAMPLERATE);
jamie@235 188 }
jamie@235 189 prev_note = note;
jamie@235 190 }
jamie@235 191
jamie@235 192 xtract_windowed(&data[n], BLOCKSIZE, window, windowed);
jamie@235 193
jamie@235 194 /* get the spectrum */
jamie@235 195 argd[0] = SAMPLERATE / (double)BLOCKSIZE;
jamie@235 196 argd[1] = XTRACT_MAGNITUDE_SPECTRUM;
jamie@235 197 argd[2] = 0.f; /* DC component - we expect this to zero for square wave */
jamie@235 198 argd[3] = 0.f; /* No Normalisation */
jamie@235 199
jamie@235 200 xtract_init_fft(BLOCKSIZE, XTRACT_SPECTRUM);
jamie@235 201 xtract[XTRACT_SPECTRUM](windowed, BLOCKSIZE, &argd[0], spectrum);
jamie@235 202 xtract_free_fft();
jamie@235 203
jamie@235 204 xtract[XTRACT_SPECTRAL_CENTROID](spectrum, BLOCKSIZE, NULL, &centroid);
jamie@235 205 // printf("\nSpectral Centroid: %f\t", centroid);
jamie@235 206
jamie@235 207 argd[1] = 10.0; /* peak threshold as % of maximum peak */
jamie@235 208 xtract[XTRACT_PEAK_SPECTRUM](spectrum, BLOCKSIZE / 2, argd, peaks);
jamie@235 209
jamie@235 210 argd[0] = f0;
jamie@235 211 argd[1] = .3; /* harmonic threshold */
jamie@235 212 xtract[XTRACT_HARMONIC_SPECTRUM](peaks, BLOCKSIZE, argd, harmonics);
jamie@235 213
jamie@235 214 /* compute the MFCCs */
jamie@235 215 xtract_mfcc(spectrum, BLOCKSIZE >> 1, &mel_filters, mfccs);
jamie@235 216
jamie@235 217 double gated[BLOCKSIZE] = {0};
jamie@235 218 double block_max = 0.0;
jamie@235 219
jamie@235 220 /* crude noise gate */
jamie@235 221 for (uint16_t k = 0; k < BLOCKSIZE; ++k)
jamie@235 222 {
jamie@235 223 if (fabs(data[n+k]) > block_max)
jamie@235 224 {
jamie@235 225 block_max = fabs(data[n+k]);
jamie@235 226 }
jamie@235 227
jamie@235 228 if (data[n+k] > .1)
jamie@235 229 {
jamie@235 230 gated[k] = data[n+k];
jamie@235 231 }
jamie@235 232 }
jamie@235 233
jamie@235 234 /* normalise */
jamie@235 235 double norm_factor = block_max > 0.0 ? 1.0 / block_max : 0.0;
jamie@235 236
jamie@235 237 for (uint16_t k = 0; k < BLOCKSIZE; ++k)
jamie@235 238 {
jamie@235 239 gated[k] *= norm_factor;
jamie@235 240 }
jamie@235 241
jamie@235 242 /* compute Spectral Flux */
jamie@235 243 argd[0] = SAMPLERATE / HALF_BLOCKSIZE;
jamie@235 244 argd[1] = XTRACT_LOG_POWER_SPECTRUM;
jamie@235 245 argd[2] = 0.f; /* DC component */
jamie@235 246 argd[3] = 1.f; /* Yes Normalisation */
jamie@235 247
jamie@235 248 xtract_features_from_subframes(gated, BLOCKSIZE, XTRACT_WINDOWED, window_subframe, subframes_windowed);
jamie@235 249 xtract_init_fft(HALF_BLOCKSIZE, XTRACT_SPECTRUM);
jamie@235 250 xtract_features_from_subframes(subframes_windowed, BLOCKSIZE, XTRACT_SPECTRUM, argd, subframes_spectrum);
jamie@235 251 xtract_free_fft();
jamie@235 252
jamie@235 253 xtract_difference_vector(subframes_spectrum, BLOCKSIZE, NULL, difference);
jamie@235 254
jamie@235 255 argd[0] = .25; /* norm order */
jamie@235 256 argd[1] = XTRACT_POSITIVE_SLOPE; /* positive slope */
jamie@235 257 argd[2] = 1; /* normalise */
jamie@235 258
jamie@235 259 /* Right shift HALF_BLOCKSIZE because we only want amplitudes not frequencies */
jamie@235 260 xtract_flux(difference, HALF_BLOCKSIZE >> 1, argd, &flux);
jamie@235 261
jamie@235 262 xtract_last_n(last_n_state, &flux, MAVG_COUNT, NULL, lastn);
jamie@235 263
jamie@235 264 argd[0] = 10; /* flux threshold */
jamie@235 265 double flux_current = 0.0;
jamie@235 266
jamie@235 267 peak_found = xtract_peak(lastn, MAVG_COUNT, argd, &flux_current);
jamie@235 268
jamie@235 269 if (peak_found == XTRACT_SUCCESS)
jamie@235 270 {
jamie@235 271 double peak_time = n / (float)SAMPLERATE;
jamie@235 272 if (peak_time - last_found_peak_time > .05 || peak_time < .05)
jamie@235 273 {
jamie@235 274 printf("Onset at %f seconds\n", n / (float)SAMPLERATE);
jamie@235 275 last_found_peak_time = peak_time;
jamie@235 276 }
jamie@235 277 }
jamie@235 278 }
jamie@235 279
jamie@235 280 /* cleanup */
jamie@235 281 for(n = 0; n < MFCC_FREQ_BANDS; ++n)
jamie@235 282 {
jamie@235 283 free(mel_filters.filters[n]);
jamie@235 284 }
jamie@235 285 free(mel_filters.filters);
jamie@235 286
jamie@235 287 xtract_free_window(window);
jamie@235 288 xtract_free_window(window_subframe);
jamie@235 289
jamie@235 290 return 0;
jamie@235 291
jamie@235 292 }