Mercurial > hg > jslab
view src/samer/mds/CovarianceTask.java @ 8:5e3cbbf173aa tip
Reorganise some more
author | samer |
---|---|
date | Fri, 05 Apr 2019 22:41:58 +0100 |
parents | bf79fb79ee13 |
children |
line wrap: on
line source
package samer.mds; // import samer.core.*; import samer.maths.*; import samer.tools.*; /** Transfer covariance matrix to MDS distances Assumes that elements are not normalised to unit variance */ public class CovarianceTask extends AnonymousTask { int N; double [] d; // linear array of distances double [][] _C; // matrix of covariances double [] var; // array of variances /** link each object to all the others using distances in matrix, returns a task that can be used to refresh distances from original matrix */ public CovarianceTask(MDSBase mds, Matrix C) { N = C.getRowDimension(); d=new double[N*(N - 1)/2]; var=new double[N]; _C=C.getArray(); mds.clearLinks(d); for (int k=0, i=0; i<N; i++) for (int j=0; j<i; j++) mds.setLink(k++,i,j); run(); } public Vec getDistances() { return new Vec.ForArray(d); } public void run() { for (int i=0; i<N; i++) var[i]=_C[i][i]; for (int k=0, i=0; i<N; i++) { double [] Ci=_C[i]; double vari=var[i]; for (int j=0; j<i; j++) d[k++]=Math.sqrt(0.5*Math.log(vari*var[j]/(Ci[j]*Ci[j]))); } } }