Mercurial > hg > jslab
annotate src/samer/models/GaussianStatsOnline.java @ 0:bf79fb79ee13
Initial Mercurial check in.
author | samer |
---|---|
date | Tue, 17 Jan 2012 17:50:20 +0000 |
parents | |
children |
rev | line source |
---|---|
samer@0 | 1 /* |
samer@0 | 2 * Copyright (c) 2000, Samer Abdallah, King's College London. |
samer@0 | 3 * All rights reserved. |
samer@0 | 4 * |
samer@0 | 5 * This software is provided AS iS and WITHOUT ANY WARRANTY; |
samer@0 | 6 * without even the implied warranty of MERCHANTABILITY or |
samer@0 | 7 * FITNESS FOR A PARTICULAR PURPOSE. |
samer@0 | 8 */ |
samer@0 | 9 |
samer@0 | 10 package samer.models; |
samer@0 | 11 import samer.core.*; |
samer@0 | 12 import samer.maths.*; |
samer@0 | 13 import samer.core.types.*; |
samer@0 | 14 |
samer@0 | 15 /** |
samer@0 | 16 Similar to GaussianStats: |
samer@0 | 17 Collect statistics about a vector: accumulates |
samer@0 | 18 sums and sums of products, then computes mean |
samer@0 | 19 and covariance. |
samer@0 | 20 |
samer@0 | 21 This is NOT a model! Computing energies and probabilities |
samer@0 | 22 directly from the first and second moments is horrible, since |
samer@0 | 23 you need the inverse of the covariance matrix. You could, |
samer@0 | 24 however, use this to train a Gaussian model. |
samer@0 | 25 |
samer@0 | 26 BUT uses a moving average with a learning rate to track changes |
samer@0 | 27 */ |
samer@0 | 28 |
samer@0 | 29 public class GaussianStatsOnline extends GaussianStats |
samer@0 | 30 { |
samer@0 | 31 VDouble rate1,rate2; |
samer@0 | 32 |
samer@0 | 33 public GaussianStatsOnline(VVector vec) throws Exception |
samer@0 | 34 { |
samer@0 | 35 super(vec); |
samer@0 | 36 rate1 = new VDouble("mean.rate",0.0001); |
samer@0 | 37 rate2 = new VDouble("cov.rate",0.0001); |
samer@0 | 38 sumx.addSaver(); |
samer@0 | 39 count=1; // should stay that way. |
samer@0 | 40 } |
samer@0 | 41 |
samer@0 | 42 public void reset() { super.reset(); count=1; } |
samer@0 | 43 public void dispose() { rate2.dispose(); rate1.dispose(); super.dispose(); } |
samer@0 | 44 public void run() |
samer@0 | 45 { |
samer@0 | 46 double r; |
samer@0 | 47 |
samer@0 | 48 r=rate1.value; |
samer@0 | 49 for (int i=0; i<n; i++) _sumx[i] += r*(x[i]-_sumx[i]); |
samer@0 | 50 |
samer@0 | 51 r=rate2.value; |
samer@0 | 52 for (int i=0; i<n; i++) { |
samer@0 | 53 double [] a=_sumxx[i]; |
samer@0 | 54 double k=x[i]; |
samer@0 | 55 for (int j=0; j<=i; j++) { |
samer@0 | 56 a[j] += r*(k*x[j]-a[j]); |
samer@0 | 57 } |
samer@0 | 58 } |
samer@0 | 59 sumx.changed(); |
samer@0 | 60 sumxx.changed(); |
samer@0 | 61 } |
samer@0 | 62 } |
samer@0 | 63 |