annotate fft/fftw/fftw-3.3.4/rdft/dft-r2hc.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21
Chris@19 22 /* Compute the complex DFT by combining R2HC RDFTs on the real
Chris@19 23 and imaginary parts. This could be useful for people just wanting
Chris@19 24 to link to the real codelets and not the complex ones. It could
Chris@19 25 also even be faster than the complex algorithms for split (as opposed
Chris@19 26 to interleaved) real/imag complex data. */
Chris@19 27
Chris@19 28 #include "rdft.h"
Chris@19 29 #include "dft.h"
Chris@19 30
Chris@19 31 typedef struct {
Chris@19 32 solver super;
Chris@19 33 } S;
Chris@19 34
Chris@19 35 typedef struct {
Chris@19 36 plan_dft super;
Chris@19 37 plan *cld;
Chris@19 38 INT ishift, oshift;
Chris@19 39 INT os;
Chris@19 40 INT n;
Chris@19 41 } P;
Chris@19 42
Chris@19 43 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
Chris@19 44 {
Chris@19 45 const P *ego = (const P *) ego_;
Chris@19 46 INT n;
Chris@19 47
Chris@19 48 UNUSED(ii);
Chris@19 49
Chris@19 50 { /* transform vector of real & imag parts: */
Chris@19 51 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@19 52 cld->apply((plan *) cld, ri + ego->ishift, ro + ego->oshift);
Chris@19 53 }
Chris@19 54
Chris@19 55 n = ego->n;
Chris@19 56 if (n > 1) {
Chris@19 57 INT i, os = ego->os;
Chris@19 58 for (i = 1; i < (n + 1)/2; ++i) {
Chris@19 59 E rop, iop, iom, rom;
Chris@19 60 rop = ro[os * i];
Chris@19 61 iop = io[os * i];
Chris@19 62 rom = ro[os * (n - i)];
Chris@19 63 iom = io[os * (n - i)];
Chris@19 64 ro[os * i] = rop - iom;
Chris@19 65 io[os * i] = iop + rom;
Chris@19 66 ro[os * (n - i)] = rop + iom;
Chris@19 67 io[os * (n - i)] = iop - rom;
Chris@19 68 }
Chris@19 69 }
Chris@19 70 }
Chris@19 71
Chris@19 72 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@19 73 {
Chris@19 74 P *ego = (P *) ego_;
Chris@19 75 X(plan_awake)(ego->cld, wakefulness);
Chris@19 76 }
Chris@19 77
Chris@19 78 static void destroy(plan *ego_)
Chris@19 79 {
Chris@19 80 P *ego = (P *) ego_;
Chris@19 81 X(plan_destroy_internal)(ego->cld);
Chris@19 82 }
Chris@19 83
Chris@19 84 static void print(const plan *ego_, printer *p)
Chris@19 85 {
Chris@19 86 const P *ego = (const P *) ego_;
Chris@19 87 p->print(p, "(dft-r2hc-%D%(%p%))", ego->n, ego->cld);
Chris@19 88 }
Chris@19 89
Chris@19 90
Chris@19 91 static int applicable0(const problem *p_)
Chris@19 92 {
Chris@19 93 const problem_dft *p = (const problem_dft *) p_;
Chris@19 94 return ((p->sz->rnk == 1 && p->vecsz->rnk == 0)
Chris@19 95 || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk))
Chris@19 96 );
Chris@19 97 }
Chris@19 98
Chris@19 99 static int splitp(R *r, R *i, INT n, INT s)
Chris@19 100 {
Chris@19 101 return ((r > i ? (r - i) : (i - r)) >= n * (s > 0 ? s : 0-s));
Chris@19 102 }
Chris@19 103
Chris@19 104 static int applicable(const problem *p_, const planner *plnr)
Chris@19 105 {
Chris@19 106 if (!applicable0(p_)) return 0;
Chris@19 107
Chris@19 108 {
Chris@19 109 const problem_dft *p = (const problem_dft *) p_;
Chris@19 110
Chris@19 111 /* rank-0 problems are always OK */
Chris@19 112 if (p->sz->rnk == 0) return 1;
Chris@19 113
Chris@19 114 /* this solver is ok for split arrays */
Chris@19 115 if (p->sz->rnk == 1 &&
Chris@19 116 splitp(p->ri, p->ii, p->sz->dims[0].n, p->sz->dims[0].is) &&
Chris@19 117 splitp(p->ro, p->io, p->sz->dims[0].n, p->sz->dims[0].os))
Chris@19 118 return 1;
Chris@19 119
Chris@19 120 return !(NO_DFT_R2HCP(plnr));
Chris@19 121 }
Chris@19 122 }
Chris@19 123
Chris@19 124 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@19 125 {
Chris@19 126 P *pln;
Chris@19 127 const problem_dft *p;
Chris@19 128 plan *cld;
Chris@19 129 INT ishift = 0, oshift = 0;
Chris@19 130
Chris@19 131 static const plan_adt padt = {
Chris@19 132 X(dft_solve), awake, print, destroy
Chris@19 133 };
Chris@19 134
Chris@19 135 UNUSED(ego_);
Chris@19 136 if (!applicable(p_, plnr))
Chris@19 137 return (plan *)0;
Chris@19 138
Chris@19 139 p = (const problem_dft *) p_;
Chris@19 140
Chris@19 141 {
Chris@19 142 tensor *ri_vec = X(mktensor_1d)(2, p->ii - p->ri, p->io - p->ro);
Chris@19 143 tensor *cld_vec = X(tensor_append)(ri_vec, p->vecsz);
Chris@19 144 int i;
Chris@19 145 for (i = 0; i < cld_vec->rnk; ++i) { /* make all istrides > 0 */
Chris@19 146 if (cld_vec->dims[i].is < 0) {
Chris@19 147 INT nm1 = cld_vec->dims[i].n - 1;
Chris@19 148 ishift -= nm1 * (cld_vec->dims[i].is *= -1);
Chris@19 149 oshift -= nm1 * (cld_vec->dims[i].os *= -1);
Chris@19 150 }
Chris@19 151 }
Chris@19 152 cld = X(mkplan_d)(plnr,
Chris@19 153 X(mkproblem_rdft_1)(p->sz, cld_vec,
Chris@19 154 p->ri + ishift,
Chris@19 155 p->ro + oshift, R2HC));
Chris@19 156 X(tensor_destroy2)(ri_vec, cld_vec);
Chris@19 157 }
Chris@19 158 if (!cld) return (plan *)0;
Chris@19 159
Chris@19 160 pln = MKPLAN_DFT(P, &padt, apply);
Chris@19 161
Chris@19 162 if (p->sz->rnk == 0) {
Chris@19 163 pln->n = 1;
Chris@19 164 pln->os = 0;
Chris@19 165 }
Chris@19 166 else {
Chris@19 167 pln->n = p->sz->dims[0].n;
Chris@19 168 pln->os = p->sz->dims[0].os;
Chris@19 169 }
Chris@19 170 pln->ishift = ishift;
Chris@19 171 pln->oshift = oshift;
Chris@19 172
Chris@19 173 pln->cld = cld;
Chris@19 174
Chris@19 175 pln->super.super.ops = cld->ops;
Chris@19 176 pln->super.super.ops.other += 8 * ((pln->n - 1)/2);
Chris@19 177 pln->super.super.ops.add += 4 * ((pln->n - 1)/2);
Chris@19 178 pln->super.super.ops.other += 1; /* estimator hack for nop plans */
Chris@19 179
Chris@19 180 return &(pln->super.super);
Chris@19 181 }
Chris@19 182
Chris@19 183 /* constructor */
Chris@19 184 static solver *mksolver(void)
Chris@19 185 {
Chris@19 186 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
Chris@19 187 S *slv = MKSOLVER(S, &sadt);
Chris@19 188 return &(slv->super);
Chris@19 189 }
Chris@19 190
Chris@19 191 void X(dft_r2hc_register)(planner *p)
Chris@19 192 {
Chris@19 193 REGISTER_SOLVER(p, mksolver());
Chris@19 194 }